精英家教网 > 初中数学 > 题目详情

【题目】在菱形ABCD中,记∠ABC=∠α(0°<∠α<90°),菱形的面积记作S,菱形的周长记作C,若AD=2,则(  )

A. C∠α的大小有关

B. ∠α=45°时,S=

C. A,B,C,D四个点可以在同一个圆上

D. S∠α的增大而增大

【答案】D

【解析】

根据菱形的周长公式、菱形的面积公式、锐角三角函数的定义、共圆的条件判断即可.

A、错误.菱形的周长=8,与∠α 的大小无关;

B、错误,∠α=45°时,菱形的面积=2×2×sin45°=2

C、错误,<∠α90°,∴对角不互补,ABCD四个点不在同一个圆上;

D、正确.∵α90°,S=菱形的面积=2×2×sinα

∴菱形的面积Sα的增大而增大.

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】直角三角形纸片ABC中,∠ACB=90°AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与ABAC边分别交于点EF

1)如果∠AFE=65°,求∠CDF的度数;

2)若折叠后的CDFBDE均为等腰三角形,那么纸片中∠B的度数是多少?写出你的计算过程,并画出符合条件的折叠后的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.

(1)求证:四边形BEDF为菱形;

(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个二次函数的图象,三位同学分别说出了它的一些特点:

甲:对称轴为直线x=4

乙:与x轴两个交点的横坐标都是整数.

丙:与y轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式__________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线上部分点的横坐标,纵坐标的对应值如下表:

根据上表填空:

抛物线与轴的交点坐标是________________

抛物线经过点,________

在对称轴右侧,增大而________

试确定抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC△ABD不全等,且AC=AD=1,∠ABD=∠ABC=45°,∠ACB=60°,则CD=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,E、F分别是AB、BC边的中点,EPCD于点P,BAD=110°,则∠FPC的度数是(  )

A. 35° B. 45° C. 50° D. 55°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,AB、AD上各有一点P、Q,APQ的周长为2,求∠PCQ.

为了解决这个问题,我们在正方形外以BCAB延长线为边作CBE,使得CBE≌△CDQ(如图)

(1)CBE可以看成由CDQ怎样运动变化得到的?

(2)图中PQPE的长度有什么关系?为什么?

(3)请用(2)的结论证明PCQ≌△PCE;

(4)根据以上三个问题的启发,求∠PCQ的度数.

(5)对于题目中的点Q,若Q恰好是AD的中点,求BP的长.

查看答案和解析>>

同步练习册答案