精英家教网 > 初中数学 > 题目详情
4.已知:如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB于点E,若△DEB的周长为10cm,求斜边AB的长.

分析 根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AC=AE,然后求出△DEB的周长=AB.

解答 解:∵AD平分∠BAC,∠C=90°,DE⊥AB,
∴CD=DE,
在Rt△ACD和Rt△AED中,
$\left\{\begin{array}{l}{AD=AD}\\{CD=DE}\end{array}\right.$,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,
∴△DEB的周长=BD+DE+BE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB,
∵△DEB的周长为10cm,
∴AB=10cm.

点评 本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并求出△DEB的周长=AB是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.计算:(-$\frac{1}{2}$)-2-23×0.125+20040+|-1|

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.在平行四边形、等腰三角形、矩形、菱形四个图形中,既是中心对称图形又是轴对称图形的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解答题
(1)(-1.5)+4$\frac{1}{4}$+2.75+(-5$\frac{1}{2}$)        
(2)3$\frac{1}{2}$-(-$\frac{1}{3}$)+2$\frac{2}{3}$+(-$\frac{1}{2}$)
(3)30-(-21)+(-98)-(+10)
(4)(-7)+(+15)-(-25)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.观察下列各等式及验证过程.
$\sqrt{\frac{1}{2}-\frac{1}{3}}$=$\frac{1}{2}$$\sqrt{\frac{2}{3}}$,验证$\sqrt{\frac{1}{2}-\frac{1}{3}}$=$\sqrt{\frac{1}{2×3}}$=$\sqrt{\frac{2}{{2}^{2}×3}}$=$\frac{1}{2}$$\sqrt{\frac{2}{3}}$;
$\sqrt{\frac{1}{2}(\frac{1}{3}-\frac{1}{4})}$=$\frac{1}{3}$$\sqrt{\frac{3}{8}}$,验证:$\sqrt{\frac{1}{2}(\frac{1}{3}-\frac{1}{4})}$=$\sqrt{\frac{1}{2×3×4}}$=$\sqrt{\frac{3}{2×{3}^{2}×4}}$=$\frac{1}{3}$$\sqrt{\frac{3}{8}}$;
$\sqrt{\frac{1}{3}(\frac{1}{4}-\frac{1}{5})}$=$\frac{1}{4}$$\sqrt{\frac{4}{15}}$,验证:$\sqrt{\frac{1}{3}(\frac{1}{4}-\frac{1}{5})}$=$\sqrt{\frac{1}{3×4×5}}$=$\sqrt{\frac{4}{3×{4}^{2}×5}}$=$\frac{1}{4}$$\sqrt{\frac{4}{15}}$.
(1)按照上述三个等式及其验证过程的基本思想,猜想$\sqrt{\frac{1}{4}(\frac{1}{5}-\frac{1}{6})}$的变形结果并进行验证.
(2)针对上述各式反映的规律,写出用n(n为正整数)表示的等式,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.$\sqrt{196}$的平方根为$±\sqrt{14}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知点M(b,5)与点N(9,2a+b)关于y轴对称,则a=7,b=-9.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.在实数范围内因式分解:3x3-6x=3x(x+$\sqrt{2}$)(x-$\sqrt{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:∠AOB(如图所示)
求作:∠AOB的平分线.(可以不写作法,但要保留作图痕迹)

查看答案和解析>>

同步练习册答案