【题目】已知关于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求证:无论m取何值,原方程总有两个不相等的实数根:
(2)若x1 , x2是原方程的两根,且|x1﹣x2|=2 ,求m的值,并求出此时方程的两根.
【答案】
(1)证明:∵△=(m+3)2﹣4(m+1)
=(m+1)2+4,
∵无论m取何值,(m+1)2+4恒大于0,
∴原方程总有两个不相等的实数根
(2)∵x1,x2是原方程的两根,
∴x1+x2=﹣(m+3),x1x2=m+1,
∵|x1﹣x2|=2 ∴(x1﹣x2)2=(2 )2,
∴(x1+x2)2﹣4x1x2=8,
∴[﹣(m+3)]2﹣4(m+1)=8∴m2+2m﹣3=0,
解得:m1=﹣3,m2=1.
当m=﹣3时,原方程化为:x2﹣2=0,
解得:x1= ,x2=﹣ ,
当m=1时,原方程化为:x2+4x+2=0,
解得:x1=﹣2+ ,x2=﹣2﹣
【解析】(1)根据关于x的一元二次方程x2+(m+3)x+m+1=0的根的判别式△=b2﹣4ac的符号来判定该方程的根的情况;(2)根据根与系数的关系求得x1+x2=﹣(m+3),x1x2=m+1;然后由已知条件“|x1﹣x2|=2 ”可以求得(x1﹣x2)2=(x1+x2)2﹣4x1x2=8,从而列出关于m的方程,通过解该方程即可求得m的值;最后将m值代入原方程并解方程.
【考点精析】解答此题的关键在于理解求根公式的相关知识,掌握根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根,以及对根与系数的关系的理解,了解一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用配方法解下列方程时,配方错误的是( )
A.x2+2x﹣99=0化为(x+1)2=100
B.
C.x2+8x+9=0化为(x+4)2=25
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若我们规定三角“”表示为:abc;方框“”表示为:(xm+yn).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:
(1)计算:= ______ ;
(2)代数式为完全平方式,则k= ______ ;
(3)解方程:=6x2+7.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是____________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,已知点P0的坐标为(,),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn(n为正整数),则点P2017的坐标为( )
A. (,) B. (0,22018) C. (,) D. (22018,0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com