精英家教网 > 初中数学 > 题目详情

【题目】如图,已知一张纸片ABCD,∠B>90°,点E是AB的中点,点G是BC上的一个动点,沿BG将纸片折叠,使点B落在纸片上的点F处,连接AF,则下列各角中与∠BEG不一定相等的是(
A.∠FEG
B.∠EAF
C.∠AEF
D.∠EFA

【答案】C
【解析】解:由折叠的性质可知:∠BEG=∠FEG,BE=EF, 又点E是AB的中点,
∴AE=BE=EF,∠AFE=∠EAF,
又2∠BEG=∠AFE+∠EAF,
∴∠BEG=∠EAF=∠EFA,
∴∠AEF不一定与∠BEG相等,
故选C.
【考点精析】本题主要考查了平行四边形的性质和翻折变换(折叠问题)的相关知识点,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=2,若∠EOF=45°,则F点的纵坐标是( )

A. B. 1 C. D. -1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2 x+2(a≠0)的图像与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).
(1)求抛物线与直线AC的函数解析式;
(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;
(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商厦用8万元购进纪念运动休闲衫,面市后供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了4元,商厦销售这种运动休闲衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完.

(1)商厦第一批和第二批各购进休闲衫多少件?

(2)请问在这两笔生意中,商厦共盈利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分校为了调查初三年级学生每周的课外活动时间,随机抽查了50名初三学生,对其平均毎周参加课外活动的时间进行了调查.由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:
(1)求m的值;
(2)计算50名学生的课外活动时间的平均数(每组时间用其组中值表示),对初三年级全体学生平均每周的课外活动吋问做个推断;
(3)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表法,求其中至少有1人课外活动时间在8~10小时的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】班派出名同学参加数学竞赛,老师以分为基准,把分数超过分的部分记为正数,不足部分记为负数.评分记录如下:

名同学中最高分和最低分各是多少?

超过基准分的和低于基准分的各有多少人?

这十二名同学的平均成绩是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A,B是反比例函数y= (k>0,x>0)图像上的两点,BC∥x轴,交y轴于点C,动点P纵坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图像大致为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上有三个点A、B、C,完成系列问题:

(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.

(2)在数轴上找到点E,使点EA、C两点的距离相等.并在数轴上标出点E表示的数.

(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,则点F表示的数是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求1+2+22+23+…+22016的值,可设S=1+2+22+23+…+22016 , 于是2S=2+22+23+…+22017 , 因此2S﹣S=22017﹣1,所以S=22017﹣1.我们把这种求和方法叫错位相减法.仿照上述的思路方法,计算出1+5+52+53+…+52016的值为( )
A.52017﹣1
B.52016﹣1
C.
D.

查看答案和解析>>

同步练习册答案