分析 由AC=BD、BC=BC结合勾股定理可得出AB=DC,在△ABC和△DCB中由SSS即可得出△ABC≌△DCB,根据全等三角形的性质可得出∠BAC=∠CDB.
解答 证明:AB=DC,∠BAC=∠CDB.
由勾股定理得:AB=$\sqrt{A{C}^{2}-B{C}^{2}}$,DC=$\sqrt{B{D}^{2}-B{C}^{2}}$,
又∵AC=BD,
∴AB=DC.
在△ABC和△DCB中,$\left\{\begin{array}{l}{AC=BD}\\{BC=BC}\\{AB=DC}\end{array}\right.$,
∴△ABC≌△DCB(SSS),
∴∠BAC=∠CDB.
点评 本题考查了全等三角形的判定与性质,解题的关键是证出△ABC≌△DCB.本题属于基础题,难度不大,解决该类型题目时,可以利用直角三角形全等的判定定理HL来得出结论.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x(10÷2+x)=6 | B. | x(10÷2-x)=6 | C. | x(10-x)=6 | D. | x(x-1)=28 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com