精英家教网 > 初中数学 > 题目详情
20.一个两位数是a,在它左边加上一个数字b变成三位数,则这个三位数用代数式表示为100b+a.

分析 b原来最高位是个位,现在最高位是百位,扩大了100倍,a不变.

解答 解:在一个两位数的左边加上一个数字b变成一个三位数,b就扩大了100倍,所以这个三位数为100b+a.
故答案为:100b+a.

点评 此题考查列代数式,掌握数字的计数方法是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.某商品原价为200元,为了吸引更多顾客,商场连续两次降价后的售价为162元,求平均每次降价的百分率是多少?设平均每次降价的百分率为x,根据题意可列方程为200(1-x)2=162.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.把下列各数填在相应的大括号里:
+2,-|-2|,-3,0,-3$\frac{1}{2}$,-1.414,17,$\frac{2}{3}$,(-1)2
正整数:{                                 }
整数:{                                 }
负分数:{                                 }
正有理数:{                                 }.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.
(1)求证:△ABD≌△ACE;
(2)求证:CE平分∠ACF;
(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.初步探索 感悟方法
如图1,用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形,设格点多边形的面积为S,它各边上格点的个数和为x.

(1)如图1中所示的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请填写下表并写出S与x之间的关系式,答:S=$\frac{1}{2}$x.
多边形的序号
多边形的面积S22.534
各边上格点的个数和x4    568
(2)你可以画些格点多边形,使这些多边形内部都有而且只有2个格点.
此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式S=$\frac{1}{2}$x+1.
(3)请你继续探索,当格点多边形内部有且只有n(n是正整数)个格点时,猜想S与x、n之间的关系式S=$\frac{1}{2}$x+(n-1)..(用含有字母x、n的代数式表示)
积累经验 拓展延伸
如图2,对等边三角形网格中的类似问题进行探究:等边三角形网格中每个小等边三角形的面积为1,小等边三角形的顶点为格点,以格点为顶点的多边形称为格点多边形.
(4)设格点多边形的面积为S,它各边上格点的个数和为x,当格点多边形内部有且只有n个格点时,猜想S与x、n之间的关系式S=x+2(n-1).(用含有字母x、n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.为了计算1+2+22+23+24+…+29+210的值,我们采用如下的方法:设S=1+2+22+23+24+…+29+210①,则2S=2+22+23+24+…+29+210+211②,由②-①,得S=211-1,利用上述的方法,求1+5+52+53+54+…+52014+52015的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.将一张长方形纸条ABCD按如图所示折叠,若折叠角∠FEC=64°.
(1)求∠1的度数;
(2)求证:△GEF是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.
探究一:
(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1
(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n=4时,m=0
(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n=5时,m=1
(4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=6时,m=1
综上所述,可得表①
n3456
m1011
探究二:
(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?
(仿照上述探究方法,写出解答过程,并把结果填在表②中)
(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三
角形?(只需把结果填在表②中)
n78910
m
你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…
解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
(设n分别等于4k-1、4k、4k+1、4k+2,其中k是整数,把结果填在表 ③中)
n4k-14k4k+14k+2
m
问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)
其中面积最大的等腰三角形每个腰用了672根木棒.(只填结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在△ABC中,AB=AC,∠BAC=50°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.
(1)求证:BE=CE;
(2)求∠CBF的度数;
(3)若AB=12,求$\widehat{AD}$的长.

查看答案和解析>>

同步练习册答案