【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200﹣2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
【答案】(1)、当1≤x<50时,y==﹣2x2+180x+2000;当50≤x≤90时,y==﹣120x+12000;(2)、第45天时,当天销售利润最大,最大利润是6050元;(3)、41
【解析】
试题分析:(1)、根据单价乘以数量,可得利润,可得答案;(2)、根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)、根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.
试题解析:(1)、当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000, 当50≤x≤90时,
y=(200﹣2x)(90﹣30)=﹣120x+12000, 综上所述:y=;
(2)、当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45, 当x=45时,y最大=﹣2×452+180×45+2000=6050, 当50≤x≤90时,y随x的增大而减小, 当x=50时,y最大=6000,
综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;
(3)、当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70, 因此利润不低于4800元的天数是20≤x<50,共30天; 当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60, 因此利润不低于4800元的天数是50≤x≤60,共11天, 所以该商品在销售过程中,共41天每天销售利润不低于4800元.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则结论:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:
设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a= ,b= ;
(2)利用探索的结论,找一组正整数a、b、m、n (a、b都不超过20)
填空: + =( + )2;
(3)若a+6=(m+n)2,且a、m、n均为正整数,求a的值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式从左到右的变形是因式分解的是( )
A.x2+2x+3=(x+1)2+2
B.(x+y)(x-y)=x2-y2
C.x2-xy+y2=(x-y)2
D.2x-2y=2(x-y)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于点B(﹣1,0)和C,O为坐标原点.
(1)求抛物线的解析式;
(2)将抛物线y=x2+bx+c向上平移个单位长度,再向左平移m(m>0)个单位长度,得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;
(3)将x轴下方的抛物线图象关于x轴对称,得到新的函数图象C,若直线y=x+k与图象C始终有3个交点,求满足条件的k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=m,BC=4,点M为边BC的中点,点P为边CD上的动点(点P异于C,D两点).连接PM,过点P作PM的垂线与射线DA相交于点E(如图).
设CP=x,DE=y.
(1)求y与x之间的函数关系式;
(2)若点P在线段DC上运动时,点E总在线段AD上,求m的取值范围;
(3)当m=8时,是否存在点P,使得点D关于直线PE的对称点F落在边AB上?若存在,求x的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com