精英家教网 > 初中数学 > 题目详情
已知:如图,在△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.

【小题1】求证:BC=CD;
【小题2】求证:∠ADE=∠ABD;
【小题3】设AD=2,AE=1,求⊙O直径的长.
p;【答案】
【小题1】∵∠ABC=90°,
∴OB⊥BC.················································ 1分
∵OB是⊙O的半径,
∴CB为⊙O的切线.····································· 2分
又∵CD切⊙O于点D,
∴BC=CD;      
【小题2】∵BE是⊙O的直径,
∴∠BDE=90°.
∴∠ADE+∠CDB =90°.···························· 4分
又∵∠ABC=90°,
∴∠ABD+∠CBD=90°.·························································· 5分
由(1)得BC=CD,∴∠CDB =∠CBD.
∴∠ADE=∠ABD;   6分
【小题3】由(2)得,∠ADE=∠ABD,∠A=∠A.
∴△ADE∽△ABD.································································· 7分
.······································································· 8分
,∴BE=3,·························································· 9分
∴所求⊙O的直径长为3.     10分解析:
p;【解析】略
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案