分析 根据已知条件设AC=3k,BC=4k,由勾股定理得到AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5k,通过△EFB∽△BAC,由相似三角形的性质得到$\frac{BE}{AB}=\frac{EF}{AC}$,代入数据即可得到结论.
解答 解:∵CA=$\frac{3}{4}$CB,
∴设AC=3k,BC=4k,
∵∠C=90°,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5k,
∵EF⊥AB,
∴∠BFE=∠C=90°,
∵∠B=∠B,
∴△EFB∽△BAC,
∴$\frac{BE}{AB}=\frac{EF}{AC}$,
∴$\frac{10}{5k}=\frac{EF}{3k}$,
∴EF=6.
点评 本题考查了相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com