【题目】如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于 .
【答案】
【解析】解答: ∵菱形ABCD中,AB=BC,
又∵AC=AB,
∴AB=BC=AC,即△ABC是等边三角形.
∴∠BAC=60°,
∴弧BC的长是: 故答案是:
本题考查了弧长公式,理解B,C两点恰好落在扇形AEF的弧EF上,即B、C在同一个圆上,得到△ABC是等边三角形是关键.
【考点精析】根据题目的已知条件,利用菱形的性质和弧长计算公式的相关知识可以得到问题的答案,需要掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;若设⊙O半径为R,n°的圆心角所对的弧长为l,则l=nπr/180;注意:在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的.
科目:初中数学 来源: 题型:
【题目】在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是 .
(1)求暗箱中红球的个数.
(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树形图或列表法求解).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把下列各数填入相应的括号内:11,-,6.5,-8,3,0,1,-1,-3.14.
(1)正数集合:{ …};(2)负数集合:{ …};
(3)整数集合:{ …};(4)正整数集合:{ …};
(5)负整数集合:{ …};(6)分数集合:{ …};
(7)正分数集合:{ …};(8)负分数集合:{ …};
(9)有理数集合:{ …}.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,大、中、小三个圆圈分别表示有理数集合、整数集合、自然数集合,把这三个圆圈如图②所示叠放在一起,形成大圆环A和小圆环B,则小圆环B表示的是负整数集合.请你把-20,0,3.14,-,5填入图②相应的位置中,并写出大圆环A所表示集合的名称.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物元().
(1)请用含的代数式分别表示顾客在两家超市购物所付的费用;
(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由;
(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C为线段AB延长线上一点,D为线段BC上一点,CD=2BD,E为线段AC上一点,CE=2AE
(1)若AB=18,BC=21,求DE的长;
(2)若AB=a,求DE的长;(用含a的代数式表示)
(3)若图中所有线段的长度之和是线段AD长度的7倍,则的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是( )
A.相切
B.相交
C.相离
D.无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图17-Z-10是由边长为1的小正方形组成的网格.
(1)求四边形ABCD的面积;
(2)你能判断AD与CD的位置关系吗?说出你的理由.
图17-Z-10
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com