精英家教网 > 初中数学 > 题目详情

对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A,B,使得∠APB=60°,则称P为⊙C 的关联点。已知点D(),E(0,-2),F(,0)

(1)当⊙O的半径为1时,

①在点D,E,F中,⊙O的关联点是       

②过点F作直线交y轴正半轴于点G,使∠GFO=30°,若直线上的点P(m,n)是⊙O的关联点,求m的取值范围;

(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围。

 

【答案】

(1)①D,E②0≤m≤(2)r≥1

【解析】解:(1)①D,E。

②由题意可知,若P要刚好是⊙C的关联点,需要点P到⊙C的两条切线PA和PB之间所夹的角为60°。

由图2可知∠APB=60°,则∠CPB=30°,

连接BC,则

∴若P点为⊙C的关联点,则需点P到圆心的距离d满足0≤d≤2r。

由(1),考虑临界点位置的P点,

如图3,

点P到原点的距离OP=2×1=2,

过点O作x轴的垂线OH,垂足为H,

∴∠OGF=60°。

∴OH=OGsin60°=

∴∠OPH=60°。可得点P1与点G重合。

过点P2作P2M⊥x轴于点M,可得∠P2OM=30°,

∴OM=OP2cos30°=

∴若点P为⊙O的关联点,则P点必在线段P1P2上。

∴0≤m≤

(2)若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点。

考虑临界情况,如图4,

即恰好E、F点为⊙K的关联时,则KF=2KN=EF=2,此时,r=1。

∴若线段EF上的所有点都是某个圆的关联点,这个圆的半径r的取值范围为r≥1。

(1)①根据关联点的定义,得出E点是⊙O的关联点,进而得出F、D,与⊙O的关系:

如图1所示,过点E作⊙O的切线设切点为R,

∵⊙O的半径为1,∴RO=1。

∵EO=2,∴∠OER=30°。

根据切线长定理得出⊙O的左侧还有一个切点,使得组成的角等于30°。

∴E点是⊙O的关联点。

∵D(),E(0,-2),F(2,0),

∴OF>EO,DO<EO。

∴D点一定是⊙O的关联点,而在⊙O上不可能找到两点使得组成的角度等于60°。故在点D、E、F中,⊙O的关联点是D,E。

②若P要刚好是⊙C的关联点,需要点P到⊙C的两条切线PA和PB之间所夹的角为60°,进而得出PC的长,进而得出点P到圆心的距离d满足0≤d≤2r,再考虑临界点位置的P点,进而得出m的取值范围。

(2)若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点;再考虑临界情况,即恰好E、F点为⊙K的关联时,则KF=2KN=EF=2,即可得出圆的半径r的取值范围。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•无锡)对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1-x2|+|y1-y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).
(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;
(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•燕山区一模)定义:对于平面直角坐标系中的任意线段AB及点P,任取线段AB上一点Q,线段PQ长度的最小值称为点P到线段AB的距离,记作d(P→AB).
已知O为坐标原点,A(4,0),B(3,3),C(m,n),D(m+4,n)是平面直角坐标系中四点.根据上述定义,解答下列问题:
(1)点A到线段OB的距离d(A→OB)=
2
2
2
2

(2)已知点G到线段OB的距离d(G→OB)=
5
,且点G的横坐标为1,则点G的纵坐标为
1-
10
或1+
10
1-
10
或1+
10

(3)当m的值变化时,点A到动线段CD的距离d (A→CD)始终为2,线段CD的中点为M.
①在图(2)中画出点M随线段CD运动所围成的图形并求出该图形的面积.
②点E的坐标为(0,2),m>0,n>0,作MH⊥x轴,垂足为H.是否存在m的值,使得以A、M、H为顶点的三角形与△AOE相似?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北京)对于平面直角坐标系xOy中的点P和⊙C,给出如下的定义:若⊙C上存在两个点A、B,使得∠APB=60°,则称P为⊙C的关联点.已知点D(
1
2
1
2
),E(0,-2),F(2
3
,0).
(1)当⊙O的半径为1时,
①在点D、E、F中,⊙O的关联点是
D,E
D,E

②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点P(m,n)是⊙O的关联点,求m的取值范围;
(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•房县模拟)问题:对于平面直角坐标系中的任意两点P1(x1,y1)、P2(x2,y2),我们把|x1-x2|+|y1-y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).如:P(-2,3)、Q(2,5)则P、Q两点的直角距离为d(P,Q)=|-2-2|+|3-5|=6
请根据根据以上阅读材料,解答下列问题:
(1)计算M(-2,7),N(-3,-5)的直角距离d(M,N)=
13
13

(2)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,则x与y之间满足的关系式为
|x|+|y|=1
|x|+|y|=1

(3)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离,试求点M(4,2)到直线y=x+2的直角距离.

查看答案和解析>>

同步练习册答案