精英家教网 > 初中数学 > 题目详情

【题目】如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQBC于点Q,PRBD于点R.

(1)①如图1,当点P为线段EC中点时,易证:PR+PQ= (不需证明).②如图2,当点P为线段EC上的任意一点(不与点E、点C重合)时,其它条件不变,则①中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.

(2)如图3,当点P为线段EC延长线上的任意一点时,其它条件不变,则PRPQ之间又具有怎样的数量关系?请直接写出你的猜想.

【答案】(1)成立,理由见解析;(2)PR﹣PQ=

【解析】

试题1)②连接BPC点作CKBD于点K.根据矩形的性质及勾股定理求出BD的长根据三角形面积相等可求出CK的长最后通过等量代换即可证明

2)图3中的结论是PRPQ=

试题解析:(1)②2中结论PR+PQ=仍成立.

证明连接BPC点作CKBD于点K

∵四边形ABCD为矩形∴∠BCD=90°.又∵CD=AB=3BC=4BD===5

SBCD=BCCD=BDCK3×4=5CKCK=

SBCE=BECKSBEP=PRBESBCP=PQBCSBCE=SBEP+SBCPBECK=PRBE+PQBC.又∵BE=BCCK=PR+PQCK=PR+PQ.又∵CK=PR+PQ=

2)过CCFBDBDFCMPRPRM连接BPSBPESBCP=SBECSBEC是固定值BE=BC为两个底PRPQ 分别为高3中的结论是PRPQ=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),( )是抛物线上两点,则y1<y2其中结论正确的是(

A.①②
B.②③
C.②④
D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,A市到B市的路程为260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回A市,同时甲车以原来1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,下列四种说法:

①甲车提速后的速度是60千米/时;

②乙车的速度是96千米/时;

③乙车返回时yx的函数关系式为y=﹣96x+384;

④甲车到达B市乙车已返回A2小时10分钟.

其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).

(1)直接用含t的代数式分别表示:QB=   ,PD=   

(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;

(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:3tan30°﹣ +(2016+π)0+(﹣ 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.

(1)求证:ED是⊙O的切线;
(2)当OE=10时,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.

(1)求证:△ABC≌△EAF;
(2)试判断四边形EFDA的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请仔细观察图中等边三角形图形的变化规律,写出你发现关于等边三角形内一点到三边距离的数学事实:_____________________

查看答案和解析>>

同步练习册答案