精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O的直径AB=10,弦AC=6,ACB的平分线交⊙OD,过点DDEABCA的延长线于点E,连接ADBD

(1)由ABBD围成的曲边三角形的面积是

(2)求证:DE是⊙O的切线;

(3)求线段DE的长.

【答案】(1);(2)证明见解析;(3)

【解析】

1)连接OD,由AB是直径知ACB=90°,结合CD平分ACBABD=∠ACD=45°,从而知AOD=90°,根据曲边三角形的面积=S扇形AOD+SBOD可得答案;

(2)由AOD=90°,即ODAB,根据DEAB可得ODDE,即可得证;

(3)勾股定理求得BC=8,作AFDE知四边形AODF是正方形,即可得DF=5,由EAF=90°﹣∠CAB=∠ABCtan∠EAF=tan∠CBA,即,求得EF的长即可得.

解:(1)如图,连接OD.∵AB是直径,且AB=10,

∴∠ACB=90°,AO=BO=DO=5.

CD平分ACB,∴∠ABD=∠ACD=ACB=45°,

∴∠AOD=90°,则曲边三角形的面积是

S扇形AOD+SBOD=+×5×5=

故答案为

(2)由(1)知AOD=90°,即ODAB

DEAB,∴ODDE

DEO的切线;

(3)∵AB=10、AC=6,∴BC==8.

过点AAFDE于点F,则四边形AODF是正方形,AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC

∴tan∠EAF=tan∠CBA

,即

EF=

DE=DF+EF=+5=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】意外创伤随时可能发生,急救是否及时、妥善,直接关系到病人的安危.为普及急救科普知识,提高学生的急救意识与现场急救能力,某校开展了急救知识进校园培训活动.为了解七、八年级学生(七、八年级各有600名学生)的培训效果,该校举行了相关的急救知识竞赛.现从两个年级各随机抽取20名学生的急救知识竞赛成绩(百.分制)进行分析,过程如下:

收集数据:

七年级:7985738075768770759475788172758086598377

八年级:9274878272819483778380817181727782807041

整理数据:

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

七年级

0

1

0

a

7

1

八年级

1

0

0

7

b

2

分析数据:

平均数

众数

中位数

七年级

78

75

c

八年级

78

d

80.5

应用数据:

1)由上表填空:a   b   c   d   

2)估计该校七、八两个年级学生在本次竞赛中成绩在80分及以上的共有多少人?

3)你认为哪个年级的学生对急救知识掌握的总体水平较好,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax22ax

1)二次函数图象的对称轴是直线x   

2)当0≤x≤3时,y的最大值与最小值的差为4,求该二次函数的表达式;

3)若a0,对于二次函数图象上的两点Px1y1),Qx2y2),当tx1t+1x2≥3时,均满足y1y2,请结合函数图象,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线(m>0)与x轴相交于点A,B,与y轴相交于点C,且点A在点B的左侧.

(1)若抛物线过点(2,2),求抛物线的解析式;

(2)在(1)的条件下,抛物线的对称轴上是否存在一点H,使AH+CH的值最小,若存在,求出点H的坐标;若不存在,请说明理由;

(3)在第四象限内,抛物线上是否存在点M,使得以点A,B,M为顶点的三角形与△ACB相似?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017重庆A卷第11题)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为(  )(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

A. 5.1 B. 6.3 C. 7.1 D. 9.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ACABCD的对角线,∠BAC90°ABC的边ABACBC的长是三个连续偶数,EF分别是边ABBC上的动点,且EFBC,将BEF沿着EF折叠得到PEF,连接APDP.若APD为直角三角形时,BF的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若抛物线yx2+bx+cx轴相交于AB两点,与y轴相交于点C,直线yx3经过点BC

1)求抛物线的解析式;

2)点P是直线BC下方抛物线上一动点,过点PPHx轴于点H,交BC于点M,连接PC

①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;

②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为⊙的直径,点是半径上一个动点(不与点重合),为⊙的半径,⊙的弦与⊙相切于点的延长线交⊙于点

1)设,则之间的数量关系是什么?请说明理由.

2)若,点关于的对称点为,连接

①当 时,四边形是菱形;

②当 时,点是弦的中点.


查看答案和解析>>

同步练习册答案