【题目】如图,若抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,直线y=x﹣3经过点B,C.
(1)求抛物线的解析式;
(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.
①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;
②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
【答案】(1)y=x2﹣2x﹣3;(2)①有,;②存在,(2,﹣3)或(3﹣,2﹣4)
【解析】
(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;
(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣)2+即可求解;
②分PM=PC、PM=MC两种情况,分别求解即可.
解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,
故点B、C的坐标分别为(3,0)、(0,﹣3),
将点B、C的坐标代入抛物线表达式得:,
解得:,
故抛物线的表达式为:y=x2﹣2x﹣3;
(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),
①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣)2+,
∵﹣1<0,故PM有最大值,当x=时,PM最大值为:;
②存在,理由:
PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;
PC2=x2+(x2﹣2x﹣3+3)2;
MC2=(x﹣3+3)2+x2;
(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,
解得:x=0或2(舍去0),
故x=2,故点P(2,﹣3);
(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,
解得:x=0或3±(舍去0和3+),
故x=3﹣,则x2﹣2x﹣3=2﹣4,
故点P(3﹣,2﹣4).
综上,点P的坐标为:(2,﹣3)或(3﹣,2﹣4).
科目:初中数学 来源: 题型:
【题目】我们定义:在平面直角坐标系中,经过点,且平行于直线或,叫过该点的“二维线”.例如,点的“二维线”有:,.
(1)写出点的“二维线”______;
(2)若点的“二维线”是,,求、的值;
(3)若反比例函数图像上的一个点有一条“二维线”是,求点的另一条“二维线”.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三角形A’B’C是由三角形ABC经过某种平移得到的,点A与点A’,点B与点B’,点C与点C’分别对应,观察点与点坐标之间的关系,解答下列问题.
(1)分别写出点A、点B、点C、点A’、点B’、点C’的坐标,并说明三角形A’B’C’是由三角ABC经过怎样的平移得到的.
(2)若点M (a+2, 4-b)是点N (2a-3, 2b- 5)通过(1)中的变换得到的,求a和b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.
(1)由AB,BD,围成的曲边三角形的面积是 ;
(2)求证:DE是⊙O的切线;
(3)求线段DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年10月1日是新中国成立70周年.某学校国庆节后,为了调查学生对这场阅兵仪式的关注情况,在全校组织了一次全体学生都参加的“阅兵仪式有关知识”的考试,批改试卷后,学校政教处随机抽取了部分学生的考卷进行成绩统计,发现成绩最低是51分,最高是100分,根据统计结果,绘制了如下尚不完整的统计图表.
调查结果频数分布表
分数段/分 | 频数 | 频率 |
0.1 | ||
18 | 0.18 | |
0.25 | ||
35 | ||
12 | 0.12 |
请根据以上信息,解答下列问题:
(1) ;
(2)若把上面频数分布表中的信息画在扇形统计图内,则所在扇形圆心角的度数是 ;
(3)请将频数分布直方图补充完整;
(4)若该校有1200名学生,请估计该校分数在范围的学生有多少名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学:你去过黄山吗?在黄山的上山路上,有一些断断续续的台阶,如图8是其中的甲、乙段台阶路的示意图,图8中的数字表示每一级台阶的高度(单位:cm).并且数d,e,e,c,c,d的方差p,数据b,d,g,f,a,h的方差q,(10cmabcdefgh20cm,且 pq),请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:
(1)两段台阶路有哪些相同点和不同点?
(2)哪段台阶路走起来更舒服?为什么?
(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学兴趣活动课上,小致将等腰的底边与直线重合.
(1)如图,在中,,点在边所在的直线上移动,根据“直线外一点到直线上所有点的连线中垂线段最短”,小致发现的最小值是____________.
(2)为进一步运用该结论,在(1)的条件下,小致发现,当最短时,如图,在中,作平分交于点点分别是边上的动点,连结小致尝试探索的最小值,小致在上截取使得连结易证,从而将转化为转化到(1)的情况,则的最小值为 ;
(3)解决问题:如图,在中,,点是边上的动点,连结将线段绕点顺时针旋转,得到线段连结,求线段的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com