精英家教网 > 初中数学 > 题目详情
16.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,若DF=2,则FC=4.

分析 首先证明△DFE∽△BAE,然后利用对应边成比例,E为OD的中点,求出DF:AB的值,又知AB=DC,即可得出DF:FC的值.

解答 解:在平行四边形ABCD中,AB∥DC,
则△DFE∽△BAE,
∴$\frac{DF}{AB}=\frac{DE}{EB}$,
∵O为对角线的交点,
∴DO=BO,
又∵E为OD的中点,
∴DE=$\frac{1}{4}$DB,
则DE:EB=1:3,
∴DF:AB=1:3,
∵DC=AB,
∴DF:DC=1:3,
∴DF:FC=1:2,
∵DF=2,
∴FC=4
故答案为:4.

点评 本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是∠1和∠4,∠2的对顶角是∠3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,⊙O的弦AB=8,P是劣弧AB中点,连结OP交AB于C,且PC=2,则⊙O的半径为(  )
A.8B.4C.5D.10

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.在求解一元二次方程-2x2+4x+1=0的两个根x1和x2时,某同学使用电脑软件绘制了如图所示的二次函数y=-2x2+4x+1的图象,然后通过观察抛物线与x轴的交点,该同学得出-1<x1<0,2<x2<3的结论,该同学采用的方法体现的数学思想是(  )
A.类比B.演绎C.数形结合D.公理化

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.阅读下列材料,并按要求完成相应的任务.

任务:
(1)如图2,是5×5的正方形网格,且小正方形的边长为1,利用“皮克定理”可以求出图中格点多边形的面积是7.5;
(2)已知:一个格点多边形的面积S为15,且边界上的点数b是内部点数a的2倍,则a+b=24;
(3)请你在图3中设计一个格点多边形(要求:①格点多边形的面积为8;②格点多边形是一个轴对称图形但不是中心对称图形)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知关于x的方程kx2-x-$\frac{2}{k}$=0(k≠0).
(1)求证:方程总有两个不相等的实数根;
(2)若方程的两个根都为整数,求整数k的值,并求出方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-2t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为(  )
A.3sB.4sC.5sD.10s

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图所示是由边长都为1的小正方形组成的8×8的正方形网格.若三角形的各个顶点郁在小正方形的顶点上.则这样的图形叫做格点三角形,已知△A0B是格点三角形.
(1)直接写出点A、B的坐标,并求△A0B的面积;
(2)作出将△A0B向右平移3个单位长度后的△CDE;
(3)在坐标轴上是否存在点P,使以点P,O,A为顶点的三角形的面积恰好等于△A0B的面积的2倍?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知,如图,△ABC中,把点C沿直线MN对折得点C′.
(1)若∠C=30°,求∠ANC′+∠BMC′的度数,若∠C为40°呢?
(2)∠C与∠ANC′,∠BMC′有怎样的数量关系,并证明.

查看答案和解析>>

同步练习册答案