精英家教网 > 初中数学 > 题目详情
8.烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-2t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为(  )
A.3sB.4sC.5sD.10s

分析 将h关于t的函数关系式变形为顶点式,即可得出升到最高点的时间,从而得出结论.

解答 解:∵h=-2t2+20t+1=-2(t-5)2+51,
∴当t=5时,礼炮升到最高点.
故选C.

点评 本题考查了二次函数的应用,解题的关键是将二次函数的关系式变形为顶点式.本题属于基础题,难度不大,解决该题型题目时,将函数的关系式进行变换找出顶点坐标即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.下列代数式:①$\frac{2}{x}$,②$\frac{x+y}{5}$,③$\frac{1}{2-a}$,$\frac{x}{3}+\frac{3}{x}$.其中是分式的有(  )
A.①②③B.①②③④C.①③④D.①②④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.(1)计算:($\sqrt{2}$+$\sqrt{3}$)($\sqrt{2}$-$\sqrt{3}$)+2$\sqrt{12}$;
(2)计算:|-3|+($\root{3}{27}$-1)0-$\sqrt{16}$+($\frac{1}{3}$)-1
(3)解方程组:$\left\{\begin{array}{l}{4x-3y=11}\\{2x+y=13}\end{array}\right.$;
(4)解不等式组:$\left\{\begin{array}{l}{x+2≥0}\\{\frac{3x-1}{2}<\frac{2x+1}{3}}\end{array}\right.$,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,若DF=2,则FC=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某超市计划购进甲、乙两种品牌的新型节能台灯20盏,这两种台灯的进价和售价如下表所示:
进价(元/件)4060
售价(元/件)60100
设购进甲种台灯x盏,且所购进的两种台灯都能全部卖出.
(1)若该超市购进这批台灯共用去1000元,问这两种台灯购进多少盏?
(2)若购进两种台灯的总费用不超过1100元,那么超市如何进货才能获得最大利润?最大利润是多少?
(3)最终超市按照(2)中的方案进货,但实际销售中,由于乙品牌的台灯销售前景不容乐观,超市计划对乙品牌台灯进行降价销售,当毎盏台灯最多降价10元时,全部销售后才能使利润不低于550元.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,等腰三角形ABC位于第一象限,∠CAB=90°,腰长为4,顶点A在直线y=x上,点A的横坐标为1,等腰三角形ABC的两腰分别平行于x轴、y轴.若双曲线y=$\frac{k}{x}$于等腰三角形ABC有公共点,则k的最大值为(  )
A.5B.$\frac{25}{4}$C.9D.16

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知$\left\{\begin{array}{l}{2x-a≤1}\\{\frac{x-2}{2}+b≤πx}\end{array}\right.$的整数解仅为1,2,3且a为偶数b为奇数,求a+b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图在直角坐标系中,已知A(-2,0),B(2,0).直线y=x+b(-2≤b≤2)交x轴于点C,交以AB为直径的⊙O于M,N两点(M在N的上方),点P是MC的中点(当M,C点重合时,点P即是点M).设线段OP的长度为l,则下列图象中大致能表示l与b之间的函数关系的图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,PA为⊙O的切线,切点为A,连接OP交圆于点B,已知PA=4,PB=2,则⊙O的半径为3.

查看答案和解析>>

同步练习册答案