精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xoy中,直线AP交x轴于点P(p,0),交y轴于点A(0,a),且a、b满足
a+3
+(p+1)2=0

(1)求直线AP的解析式;
(2)如图1,点P关于y轴的对称点为Q,R(0,2),点S在直线AQ上,且SR=SA,求直线RS的解析式和点S的坐标;
(3)如图2,点B(-2,b)为直线AP上一点,以AB为斜边作等腰直角三角形ABC,点C在第一象限,D为线段OP上一动点,连接DC,以DC为直角边,点D为直角顶点作等腰三角形DCE,EF⊥x轴,F为垂足,下列结论:①2DP+EF的值不变;②
AO-EF
2DP
的值不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.
分析:(1)根据非负数的性质列式求出a、p的值,从而得到点A、P的坐标,然后利用待定系数法求直线的解析式;
(2)根据关于y轴的点的对称求出点Q的坐标,再利用待定系数法求出直线AQ的解析式,设出点S的坐标,然后利用两点间的距离公式列式进行计算即可求出点S的坐标,再利用待定系数法求解直线RS的解析式;
(3)根据点B的横坐标为-2,可知点P为AB的中点,然后求出点B得到坐标,连接PC,过点C作CG⊥x轴于点G,利用角角边证明△APO与△PCG全等,根据全等三角形对应边相等可得PG=AO,CG=PO,再根据△DCE是等腰直角三角形,利用角角边证明△CDG与△EDF全等,根据全等三角形对应边相等可得DG=EF,然后用EF表示出DP的长度,然后代入两个结论进行计算即可找出正确的结论并得到定值.
解答:解:(1)根据题意得,a+3=0,p+1=0,
解得a=-3,p=-1,
∴点A、P的坐标分别为A(0,-3)、P(-1,0),
设直线AP的解析式为y=mx+n,
n=-3
-m+n=0

解得
m=-3
n=-3

∴直线AP的解析式为y=-3x-3;

(2)根据题意,点Q的坐标为(1,0),
设直线AQ的解析式为y=kx+c,
c=-3
k+c=0

解得
k=3
c=-3

∴直线AQ的解析式为y=3x-3,
设点S的坐标为(x,3x-3),
则SR=
(x-0)2+(3x-3-2)2
=
x2+(3x-5)2

SA=
(0-x)2+(-3-3x+3)2
=
x2+9x2

∵SR=SA,
x2+(3x-5)2
=
x2+9x2

解得x=
5
6

∴3x-3=3×
5
6
-3=-
1
2

∴点S的坐标为S(
5
6
,-
1
2
),
设直线RS的解析式为y=ex+f,
f=2
5
6
e+f=-
1
2

解得
e=-3
f=2

∴直线RS的解析式为y=-3x+2;

(3)∵点B(-2,b),
∴点P为AB的中点,
连接PC,过点C作CG⊥x轴于点G,
∵△ABC是等腰直角三角形,
∴PC=PA=
1
2
AB,PC⊥AP,
∴∠CPG+∠APO=90°,∠APO+∠PAO=90°,
∴∠CPG=∠PAO,
在△APO与△PCG中,
∠CPG=∠PAO
∠AOP=∠PGC=90°
PC=AP

∴△APO≌△PCG(AAS),
∴PG=AO=3,CG=PO,
∵△DCE是等腰直角三角形,
∴CD=DE,∠CDG+∠EDF=90°,
又∵EF⊥x轴,
∴∠DEF+∠EDF=90°,
∴∠CDG=∠DEF,
在△CDG与△EDF中,
∠CDG=∠DEF
∠EFD=∠CGD=90°
CD=DE

∴△CDG≌△EDF(AAS),
∴DG=EF,
∴DP=PG-DG=3-EF,
①2DP+EF=2(3-EF)+EF=6-EF,
∴2DP+EF的值随点P的变化而变化,不是定值,
AO-EF
2DP
=
3-EF
2(3-EF)
=
1
2

AO-EF
2DP
的值与点D的变化无关,是定值
1
2
点评:本题综合考查了一次函数的问题,待定系数法求直线解析式,非负数的性质,等腰直角三角形的性质,全等三角形的判定与性质,以及关于y轴对称的点的坐标的特点,综合性较强,难度较大,需仔细分析找准问题的突破口.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案