精英家教网 > 初中数学 > 题目详情

【题目】已知:ABC中,且∠BAC70°ADABC的角平分线,点EAC边上的一点,点F为直线AB上的一动点,连结EF,直线EF与直线AD交于点P,设∠AEFα°

(1)如图①,若 DE//AB,则①∠ADE的度数是_______;

②当∠DPE=∠DEP时,∠AEF= _____:当∠PDE=∠PED,∠AEF=_______;

(2)如图②,若DEAC,则是否存在这样的α的值,使得DPE中有两个相等的角?若存在求出α的值;若不存在,说明理由

【答案】1)①35°;②37.575;(227.5°或20°或35°.

【解析】

1)①利用平行线的性质,可知∠ADE=BAD,由此即可解决问题;

②利用三角形的内角和定理以及三角形的外角的性质解决问题即可;

2)用分类讨论的思想思考问题即可;

解:(1)①∵∠BAC=70°,AD是△ABC的角平分线,

∴∠BAD=BAC=35°,

DEAB

∴∠ADE=BAD=35°,

故答案为35°.

②在△DPE中,∵∠ADE=35°,

∴∠DPE=PED=180°-35°)=72.5°,

∵∠DPE=AEP+DAE

∴∠AEF=72.5°-35°=37.5°;

∵当∠PDE=PED时,∠DPE=70°,

∴∠AEF=DPE-DAE=75°.

故答案为37.575

2)在RtADE中,∠ADE=90°-35°=55°.

①当DP=DE时,∠DPE=62.5°,∠AEF=DPE-DAC=62.5°-35°=27.5°.

②当EP=ED时,∠EPD=ADE=55°,∠AEF=DPE-DAC=55°-35°=20°.

③当DP=PE时,∠EPD=180°-2×55°=70°,∠AEF=DPE-DAC=70°-35°=35°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙与菱形在平面直角坐标系中,点的坐标为的坐标为,点的坐标为,点轴上,且点在点的右侧.

)求菱形的周长.

)若⊙沿轴向右以每秒个单位长度的速度平移,菱形沿轴向左以每秒个单位长度的速度平移,设菱形移动的时间为(秒),当⊙相切,且切点为的中点时,连接,求的值及的度数.

)在()的条件下,当点所在的直线的距离为时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD中,若∠A=∠C90°,则四边形ABCD是“准矩形”;如图②,在四边形ABCD中,若ABADBCDC,则四边形ABCD是“准菱形”.

1)如图,在边长为1的正方形网格中,ABC在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:DD′在格点上);

2)下列说法正确的有 ;(填写所有正确结论的序号)

一组对边平行的“准矩形”是矩形;一组对边相等的“准矩形”是矩形;

一组对边相等的“准菱形”是菱形;一组对边平行的“准菱形”是菱形.

3)如图,在△ABC中,∠ABC90°,以AC为一边向外作“准菱形”ACEF,且ACECAFEFAECF交于点D

若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;

的条件下,连接BD,若BD,∠ACB15°,∠ACD30°,请直接写出四边形ACEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一张长方形纸片ABCD折叠起来,使其对角顶点AC重合,DG重合.若长方形的长BC8,宽AB4,求:

1CF的长;

2)求三角形GED的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%;那么当售出的甲、乙两种商品的件数相等时,这个商人的总利润率是____(利润率=利润÷成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.

1)如图①,在菱形ABCD中,∠ABC=120°,点MN分别在ADCD上,且∠MBN=60°,试判断四边形DMBN是否为“等邻边四边形”?请说明理由.

2)如图②,在矩形ABCD中,AB=8BC=12.5,点EBC上,且BE=6,在矩形ABCD内或边上,确定一点P,使四边形ABEP为最大面积的“等邻边四边形”,若能实现,请求出最大面积;若不能实现,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高中学生身体素质学校开设了A篮球、B足球、C跳绳、D羽毛球四种体育活动为了解学生对这四种体育活动的喜欢情况在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种)将数据进行整理并绘制成以下两幅统计图(未画完整)

1)这次调查中一共调查了________名学生

2)请补全两幅统计图

3)若有3名喜欢跳绳的学生1名喜欢足球的学生组队外出参加一次联谊活动欲从中选出2人担任组长(不分正副)求一人是喜欢跳绳、一人是喜欢足球的学生的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为正方形的边上任意一点,在正方形内部做等腰直角

1)如图1,若,则_________(请直接写出答案)

2)作关于的对称点,连接于点

①补全图形1

②证明:四边形ECHF为平行四边形.

3)在(2)的条件下,连接,请直接写出之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校奖励给王伟和李丽上海世博园门票共两张,其中一张为指定日门票,另一张为普通日门票。王伟和李丽分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被三等分)确定指定日门票的归属,在两个转盘都停止转动后,若指针所指的两个数字之和为 偶数,则王伟获得指定日门票;若指针所指的两个数字之和为奇数,则李丽获得指定日门票;若指针指向分隔线,则重新转动。你认为这个方法公平吗?请画树状图或列表,并说明理由.

查看答案和解析>>

同步练习册答案