精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,O是对角线ACBD的交点,MBC边上的动点(点M不与B,C重合),CNDM,与AB交于点N,连接OM,ON,MN.下列四个结论:①△CNB≌△DMC;OM=ON;③△OMN∽△OAD;AN2+CM2=MN2,其中正确结论的个数是(  )

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

据正方形的性质,依次判定CNB≌△DMC,OCM≌△OBN,根据全等三角形的性质以及勾股定理进行计算即可得出结论.

∵正方形ABCD中,CD=BC,BCD=90°,

∴∠BCN+DCN=90°,

又∵CNDM,

∴∠CDM+DCN=90°,

∴∠BCN=CDM,

又∵∠CBN=DCM=90°,

∴△CNB≌△DMC(ASA),故①正确;

∵△CNB≌△DMC,可得CM=BN,

又∵∠OCM=OBN=45°,OC=OB,

∴△OCM≌△OBN(SAS),

OM=ON故②正确,

∵△OCM≌△OBN,

∴∠COM=BON,

∴∠MON=COB=90°,

∴△MON是等腰直角三角形,

∵△AOD也是等腰直角三角形,

∴△OMN∽△OAD,故③正确,

AB=BC,CM=BN,

BM=AN,

又∵RtBMN中,BM2+BN2=MN2

AN2+CM2=MN2

故④正确;

∴本题正确的结论有:①②③④

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上,如果BC=5,ABC的面积是10,那么这个正方形的边长是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴=–1,P为抛物线上第二象限的一个动点.

(1)求抛物线的解析式并写出其顶点坐标;

(2)当点P的纵坐标为2时,求点P的横坐标;

(3)当点P在运动过程中,求四边形PABC面积最大时的值及此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,点上,过点,分别与交于,过

求证:的切线;

相切于点的半径为,求长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC,ACB=,∠B=AC=1BC=AB=2AC在直线l上,将ABC绕点A顺时针转到位置①可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+,按此顺序继续旋转,得到点P2016,则AP2016=( )

A. 2016+671B. 2016+672

C. 2017+671D. 2017+672

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCABBC,点EAB上,DEC90°

1)求证:ADE∽△BEC

2)若AD1BC3AE2,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l//ABlAB之间的距离为2CD是直线l上两个动点(点CD点的左侧),且AB=CD=5.连接ACBCBD,将ABC沿BC折叠得到ABC.下列说法:①四边形ABDC的面积始终为10;②当AD重合时,四边形ABDC是菱形;③当AD不重合时,连接AD,则∠CAD+BC A′=180°;④若以ACBD为顶点的四边形为矩形,则此矩形相邻两边之和为37.其中正确的是( )

A. ①②③④B. ①③④C. ①②④D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,AB=3AC=4BC=5P 为边 BC 上一动点,PEAB EPFAC FM EF 中点,则 AM 的最小值为(

A.1B.1.3C.1.2D.1.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】基本图形:在Rt△中,边上一点(不与点重合),将线段绕点逆时针旋转得到.

探索:(1)连接,如图①,试探索线段之间满足的等量关系,并证明结论;

(2)连接,如图②,试探索线段之间满足的等量关系,并证明结论;

联想:(3)如图③,在四边形中,.若,则的长为 .

查看答案和解析>>

同步练习册答案