精英家教网 > 初中数学 > 题目详情

【题目】国家发改委、工业和信息化部、财政部公布了节能产品惠民工程,公交公司积极响应将旧车换成节能环保公交车,计划购买A型和B型两种环保型公交车10辆,其中每台的价格、年载客量如表:

A

B

价格(万元/台)

x

y

年载客量/万人次

60

100

若购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元.

1)求xy的值;

2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保10辆公交车在该线路的年载客量总和不少于680万人次,问有哪几种购买方案?

3)在(2)的条件下,哪种方案使得购车总费用最少?最少费用是多少万元?

【答案】1;(2)有三种购车方案,方案一:购买A型公交车6辆,购买B型公交车4辆;方案二:购买A型公交车7辆,购买B型公交车3辆;方案三:购买A型公交车8辆,购买B型公交车2辆;(3)总费用最少的方案是购买A型公交车8辆,购买B型公交车2辆,购车总费用为1100万元.

【解析】

1)根据购买A型环保公交车1辆,B型环保公交车2辆,共需400万元;若购买A型环保公交车2辆,B型环保公交车1辆,共需350万元列出二元一次方程组求解可得;

2)购买A型环保公交车m辆,则购买B型环保公交车(10m)辆,根据总费用不超过1200万元、年载客量总和不少于680万人次列一元一次不等式组求解可得;

3)设购车总费用为w万元,根据总费用的数量关系得出w100m+15010m)=﹣50m+1500,再进一步利用一次函数的性质求解可得.

1)由题意,得

解得

2)设购买A型环保公交车m辆,则购买B型环保公交车(10m)辆,

由题意,得

解得6≤m≤8

m为整数,

∴有三种购车方案

方案一:购买A型公交车6辆,购买B型公交车4辆;

方案二:购买A型公交车7辆,购买B型公交车3辆;

方案三:购买A型公交车8辆,购买B型公交车2辆.

3)设购车总费用为w万元

w100m+15010m)=﹣50m+1500

∵﹣5006≤m≤8m为整数,

m8时,w最小1100

∴购车总费用最少的方案是购买A型公交车8辆,购买B型公交车2辆,购车总费用为1100万元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】画图并填空:如图,方格纸中每个小正方形的边长都为 1,在方格纸内将ABC经过一次平移后得到ABC,图中标出了点B 的对应点 B

(1)在给定方格纸中画出平移后的ABC

(2)线段 AA与线段 BB的数量和位置关系是___________

(3)ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组 ,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,随着我市铁路建设进程的加快,现规划从A地到B地有一条笔直的铁路通过,但在附近的C处有一大型油库,现测得油库C在A地的北偏东60°方向上,在B地的西北方向上,AB的距离为250( +1)米.已知在以油库C为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段修建铁路,油库C是否会受到影响?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y1=﹣ x+2与x轴,y轴分别交于B,C,抛物线y=ax2+bx+c(a≠0)经过点A,B,C,点A坐标为(﹣1,0).

(1)求抛物线的解析式;
(2)抛物线的对称轴与x轴交于点D,连接CD,点P是直线BC上方抛物线上的一动点(不与B,C重合),当点P运动到何处时,四边形PCDB的面积最大?求出此时四边形PCDB面积的最大值和点P坐标;
(3)在抛物线上的对称轴上:是否存在一点M,使|MA﹣MC|的值最大;是否存在一点N,使△NCD是以CD为腰的等腰三角形?若存在,直接写出点M,点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇准备完成题目:化简:,发现系数印刷不清楚.

(1)他把猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);

(2)他妈妈说:你猜错了,我看到该题标准答案的结果是常数.通过计算说明原题中是几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABC中,∠B=90°,AB=6cm,BC=8cm.

(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使PBQ的面积等于8cm2

(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.

(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,PBQ的面积为1?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线CBOA,∠C=A=120°EFCB上,且满足∠FOB=AOBOE平分∠COF

1)求∠EOB的度数;

2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;

3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=OBA?若存在,求出其度数;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若﹣ a≥b,则a≤﹣2b,其根据是( )
A.不等式的两边都加上(或减去)同一个整式,不等号的方向不变
B.不等式的两边都乘(或除以)同一个正数,不等号的方向不变
C.不等式的两边都乘(或除以)同一个负数,不等号的方向改变
D.以上答案均不对

查看答案和解析>>

同步练习册答案