| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 根据三角形的内角和定理或勾股定理的逆定理即可进行判断,从而得到答案.
解答 解:(1)∵一个内角等于另外两个内角之差,∴∠A=∠B-∠C,∵∠A+∠B+∠C=180°,
∴∠B=90°,故是直角三角形;
(2)∵三个内角度数之比为3:4:5;∴设较小的角为3x,则其于两角为4x,5x,则三个角分别为45°,60°,75°,故不是直角三角形;
(3)因为三边符合勾股定理的逆定理,故是直角三角形;
(4)因为三边符合勾股定理的逆定理,故是直角三角形.
所以有三个直角三角形,故选C.
点评 本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x=2或x=-2 | B. | x=2 | C. | x=4或x=-4 | D. | x=$\sqrt{2}$或x=-$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com