【题目】如图,在平面直角坐标系中,点的坐标为(1,0),点的横坐标为2,将点 绕点P旋转,使它的对应点恰好落在轴上(不与点重合);再将点绕点O逆时针旋转90°得到点.
(1)直接写出点和点C的坐标;
(2)求经过A,B,C三点的抛物线的表达式.
【答案】(1)点B的坐标为(3,0),点C的坐标为(0,3);(2).
【解析】试题分析:(1)过P作PM⊥x轴于点M,由AM=BM,可得B点坐标,由点绕点O逆时针旋转90°得到点C,可得点C坐标;
(2)这出抛物线解析式的一般形式,代入A、B、C三点坐标即可求得a、b、c的值,由此可得抛物线的解析式.
(1)如图:
过P作PM⊥x轴于点M,则M(2,0),
∵PA=PB,A(1,0),
∴AM=BM,
∴B(3,0),
∵OB=OC,
∴C(0,3).
故:点B的坐标为(3,0),点C的坐标为(0,3);
(2)设抛物线的解析式为.因为 它经过A(1,0), B(3,0), C(0,3),
则,解得,
∴经过A,B,C三点的抛物线的表达式为.
科目:初中数学 来源: 题型:
【题目】已知△ABC中,∠ABC=∠ACB,D为线段CB上一点(不与C、B重合),点E为射线CA上一点,∠ADE=∠AED.设∠BAD=α,∠CDE=β.
(1)如图(1),
①若∠BAC=42°,∠DAE=30°,则α= ,β= .
②若∠BAC=54°,∠DAE=36°,则α= ,β= .
③写出α与β的数量关系,并说明理由;
(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出α与β的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校开展综合实践活动中,某班进行了小制作评比,作品上交时间为5月11日至5月30日,评委们把同学们上交作品的件数按5天一组分组统计,绘制了频数分布直方图如下,小长方形的高之比为:2:5:2:1.现已知第二组的上交作品件数是20件.求:
(1)此班这次上交作品共 件;
(2)评委们一致认为第四组的作品质量都比较高,现从中随机抽取2件作品参加学校评比,小明的两件作品都在第四组中,他的两件作品都被抽中的概率是多少?(请写出解答过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x,y的方程组的解满足x<0,y>0.
(1)x=________, y=________(用含a的代数式表示);
(2)求a的取值范围;
(3)若2x8y=2m,用含有a的代数式表示m,并求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列条件中,△ABC不是直角三角形的是 ( )
A. b2=a2-c2 B. ∠A:∠B:∠C=3:4:5
C. ∠C=∠A-∠B D. a2:b2:c2=1:3:2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中,真命题是( ).
① 相等的角是对顶角;② 同旁内角互补;③ 在同一平面内,若a//b,b//c,则a//c;④ 末位是零的整数能被5整除.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题6分)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根.
(1)求实数k的取值范围.
(2)若方程两实根满足|x1|+|x2|=x1·x2,求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com