【题目】已知四边形ABCD的一组对边AD、BC的延长线交于点E.
(1)如图1,若∠ABC=∠ADC=90°,求证:EDEA=ECEB;
(2)如图2,若∠ABC=120°,cos∠ADC= ,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;
(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC= ,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)
【答案】
(1)解:如图1中,
∵∠ADC=90°,∠EDC+∠ADC=180°,
∴∠EDC=90°,
∵∠ABC=90°,
∴∠EDC=∠ABC,
∵∠E=∠E,
∴△EDC∽△EBA,
∴ = ,
∴EDEA=ECEB.
(2)解:如图2中,过C作CF⊥AD于F,AG⊥EB于G.
在Rt△CDF中,cos∠ADC= ,
∴ = ,∵CD=5,
∴DF=3,
∴CF= =4,
∵S△CDE=6,
∴ EDCF=6,
∴ED= =3,EF=ED+DF=6,
∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC,
∴∠BAG=30°,
∴在Rt△ABG中,BG= AB=6,AG= =6 ,
∵CF⊥AD,AG⊥EB,
∴∠EFC=∠G=90°,∵∠E=∠E,
∴△EFC∽△EGA,
∴ = ,
∴ = ,
∴EG=9 ,
∴BE=EG﹣BG=9 ﹣6,
∴S四边形ABCD=S△ABE﹣S△CDE= (9 ﹣6)×6 ﹣6=75﹣18 .
(3)解:如图3中,作CH⊥AD于H,则CH=4,DH=3,
∴tan∠E= ,
作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,
∴FG=DF﹣DG=5+n﹣3a,
∵CH⊥AD,AG⊥DF,∠E=∠F,
易证△AFG∽△CEH,
∴ = ,
∴ = ,
∴a= ,
∴AD=5a= .
【解析】要证乘积式等式成立,可化为比例式即成立,进一步确定三角形△EDC与△EBA相似;(2)特殊角、三角函数应放在直角三角形中运用,因此需作垂线构造直角三角形,恰好构造出第(1)题的图形,借鉴第一问的思路,求出EG,进一步利用面积之差,求出四边形ABCD的面积.(3)作垂线构造出直角三角形,利用相似三角形△AFG∽△CEH,构建比例式,求出AD的长.
【考点精析】认真审题,首先需要了解相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方),还要掌握锐角三角函数的定义(锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】已知一副三角板按如图1方式拼接在一起,其中边OA、OC与直线EF重合,,
图1中______
如图2,三角板COD固定不动,将三角板AOB绕着点O按顺时针方向旋转一个角度,在转动过程中两块三角板都在直线EF的上方:
当OB平分OA、OC、OD其中的两边组成的角时,求满足要求的所有旋转角度的值;
是否存在?若存在,求此时的的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx﹣2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=﹣2和x=5时二次函数的函数值y相等.
(1)求实数a、b的值;
(2)如图1,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒 个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.
(1)①若∠DCB=45°,则∠ACB的度数为 .
②若∠ACB=140°,则∠DCE的度数为 .
(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.
(3)当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值(不必说明理由).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】受寒潮影响,淘宝网上的电热取暖器销售火旺,某电商销售每台成本价分别为200元、170元的A、B两种型号的电热取暖器,下表是近两天的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一天 | 3台 | 5台 | 1800元 |
第二天 | 4台 | 10台 | 3100元 |
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A,B两种型号的电热取暖器的销售单价;
(2)若电商准备用不多于5400元的金额再采购这两种型号的电热取暖器共30台,求A种型号的电热取暖器最多能采购多少台?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上
(1)求抛物线的解析式;
(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;
(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒
个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七年级(1)班的宣传委员在办黑板报时,采用了下面的图案作为边框,其中每个黑色六边形与6个自色六边形相邻,若一段边框上有25个黑色六边形,则这段边框共有白色六边形
A. 100个 B. 102个 C. 98个 D. 150个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
(本小题满分8分)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.
(1)求该校八年级学生参加社会实践活动的人数;
(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备
后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图
象如图所示.
(1)求甲组加工零件的数量y与时间之间的函数关系式.(2分)
(2)求乙组加工零件总量的值.(3分)
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?(5分)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com