精英家教网 > 初中数学 > 题目详情

【题目】已知一副三角板按如图1方式拼接在一起,其中边OAOC与直线EF重合,

1______

如图2,三角板COD固定不动,将三角板AOB绕着点O按顺时针方向旋转一个角度,在转动过程中两块三角板都在直线EF的上方:

OB平分OAOCOD其中的两边组成的角时,求满足要求的所有旋转角度的值;

是否存在?若存在,求此时的的值;若不存在,请说明理由.

【答案】(1)75(2)①②当时,存在

【解析】

1)根据平平角的定义即可得到结论;

2)①根据已知条件和角平分线的定义即可得到结论;

②当OAOD的左侧时,当OAOD的右侧时,列方程即可得到结论.

解:(1)∵∠AOB45°,∠COD60°,

∴∠BOD180°AOBCOD75°,

故答案为:75

2)①当OB平分∠AOD时,

∵∠AOE=α,∠COD60°,

∴∠AOD180°AOECOD120°α,

∴∠AOBAOD60°α=45°,

∴α=30°,

OB平分∠AOC时,

∵∠AOC180°α,

∴∠AOB90°α=45°,

∴α=90°;

OB平分∠DOC时,

∵∠DOC60°,

∴∠BOC30°,

∴α=180°45°30°=105°,

综上所述,旋转角度α的值为30°,90°,105°;

②当OAOD的左侧时,则∠AOD120°α,∠BOC135°α,

∵∠BOC2AOD

135°α=2120°α),

∴α=105°;

OAOD的右侧时,则∠AOD=α120°,∠BOC135°α,

∵∠BOC2AOD

135°α=2(α120),

∴α=125°,

综上所述,当α=105°或125°时,存在∠BOC2AOD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.

1)甲、乙两种款型的T恤衫各购进多少件?

2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完 这批T恤衫商店共获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.

(1)求证:四边形ADCE的是矩形;
(2)若AB=17,BC=16,求四边形ADCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OD是∠AOB的平分线,OE是∠BOC的平分线.

(1)若∠BOC=50°,BOA=80°,求∠DOE的度数;

(2)若∠AOC=150°,求∠DOE的度数;

(3)你发现∠DOE与∠AOC有什么等量关系?给出结论并说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)计算:[x+y2﹣(xy2]÷(2xy).

2)解方程:

3)因式分解:xy24x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是(用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,然后解答后面的问题.

我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得,(xy为正整数)∴则有0x6.又为正整数,则为正整数.

23互质,可知:x3的倍数,从而x=3,代入

2x+3y=12的正整数解为

问题:

1)请你写出方程2x+y=5的一组正整数解:______

2)若为自然数,则满足条件的x值有______个;

A2B3C4D5

3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】去冬今春,某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD的一组对边AD、BC的延长线交于点E.
(1)如图1,若∠ABC=∠ADC=90°,求证:EDEA=ECEB;

(2)如图2,若∠ABC=120°,cos∠ADC= ,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;

(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC= ,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)

查看答案和解析>>

同步练习册答案