精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料,然后解答后面的问题.

我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得,(xy为正整数)∴则有0x6.又为正整数,则为正整数.

23互质,可知:x3的倍数,从而x=3,代入

2x+3y=12的正整数解为

问题:

1)请你写出方程2x+y=5的一组正整数解:______

2)若为自然数,则满足条件的x值有______个;

A2B3C4D5

3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?

【答案】(1)当x=1时,y=3;当x=2时,y=1(2)C(3)有两种购买方案:即购买单价为3元的笔记本5本,单价为5元的钢笔4支;或购买单价为3元的笔记本10本,单价为5元的钢笔1支.

【解析】

根据题意可知,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解.(1)(2)参照例题的解题思路进行解答;
3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=35,其中mn均为自然数.参照例题的解题思路解该二元一次方程即可.

解:(1)由2x+y=5,得y=5-2xxy为正整数).

所以 ,即0x

∴当x=1时,y=3

x=2时,y=1

即方程的正整数解是

2)同样,若 为自然数,

则有:0x-2≤6,即2x≤8

x=3时,

x=4时,

x=5时,

x=8时,

即满足条件x的值有4个,

故选C

3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.

则根据题意得:3m+5n=35,其中mn均为自然数.

于是有:

解得:

所以0m

由于n=7-m为正整数,则m为正整数,可知m5的倍数.

∴当m=5时,n=4

m=10时,n=1

答:有两种购买方案:即购买单价为3元的笔记本5本,单价为5元的钢笔4支;

或购买单价为3元的笔记本10本,单价为5元的钢笔1支.

故答案为:(1)当x=1时,y=3;当x=2时,y=1;(2C;(3)有两种购买方案:即购买单价为3元的笔记本5本,单价为5元的钢笔4支;或购买单价为3元的笔记本10本,单价为5元的钢笔1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】现有若干张如图1所示的正方形纸片AB和长方形纸片C

1)小王利用这些纸片拼成了如图2的一个新正方形,通过用两种不同的方法计算新正方形面积,由此,他得到了一个等式:______

2)小王再取其中的若干张纸片(三种纸片都要取到)拼成一个面积为a2+3ab+nb2的长方形,则n可取的正整数值是______ ,并请你在图3位置画出拼成的长方形;

3)根据拼图经验,请将多项式a2+5ab+4b2分解因式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.

(1)求该抛物线的解析式;
(2)阅读理解:
在同一平面直角坐标系中,直线l1:y=k1x+b1(k1 , b1为常数,且k1≠0),直线l2:y=k2x+b2(k2 , b2为常数,且k2≠0),若l1⊥l2 , 则k1k2=﹣1.
解决问题:
①若直线y=3x﹣1与直线y=mx+2互相垂直,求m的值;
②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一副三角板按如图1方式拼接在一起,其中边OAOC与直线EF重合,

1______

如图2,三角板COD固定不动,将三角板AOB绕着点O按顺时针方向旋转一个角度,在转动过程中两块三角板都在直线EF的上方:

OB平分OAOCOD其中的两边组成的角时,求满足要求的所有旋转角度的值;

是否存在?若存在,求此时的的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AOB内部有三条射线,OE平分AODOC平分BOD

1)若AOB=90°,求EOC的度数;

2)若AOB,求EOC的度数;

3)如果将题中“平分”的条件改为EOA=AODDOC=DOBDOEDOC=43AOB=90°,求EOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,射线AMBN,点EFD在射线AM上,点C在射线BN上,且∠BCD=∠ABE平分∠ABFBD平分∠FBC.

(1)求证:ABCD.

(2)如果平行移动CD,那么∠AFB与∠ADB的比值是否发生变化?若变化,找出变化规律;若不变,求出这两个角的比值.

(3)如果∠A100°,那么在平行移动CD的过程中,是否存在某一时刻,使∠AEB=∠BDC?若存在,求出此时∠AEB的度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,矩形ABCD的边AD=3,A,0),B(2,0),直线ykx+b经过BD两点.

(1)求直线ykx+b的解析式;

(2)将直线ykx+b平移,若它与矩形有公共点,直接写出b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx﹣2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=﹣2和x=5时二次函数的函数值y相等.

(1)求实数a、b的值;
(2)如图1,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒 个单位长度的速度沿射线AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.
①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由.
②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】七年级(1)班的宣传委员在办黑板报时,采用了下面的图案作为边框,其中每个黑色六边形与6个自色六边形相邻若一段边框上有25个黑色六边形,则这段边框共有白色六边形

A. 100 B. 102 C. 98 D. 150

查看答案和解析>>

同步练习册答案