【题目】将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.
(1)①若∠DCB=45°,则∠ACB的度数为 .
②若∠ACB=140°,则∠DCE的度数为 .
(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.
(3)当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值(不必说明理由).
【答案】(1)①135°;②40°;(2)∠ACB+∠DCE=180°,理由见解析;(3)30°、45°.
【解析】
(1)①根据直角三角板的性质结合∠DCB=45°即可得出∠ACB的度数;
②由∠ACB=140°,∠ECB=90°,可得出∠ACE的度数,进而得出∠DCE的度数;
(2)根据①中的结论可提出猜想,再由∠ACB=∠ACD+∠DCB,∠ACB+∠DCE=90°+∠DCB+∠DCE可得出结论;
(3)分CB∥AD、EB∥AC两种情况进行讨论即可.
(1)①∵∠DCB=45°,∠ACD=90°,
∴∠ACB=∠DCB+∠ACD=45°+90°=135°,
故答案为:135°;
②∵∠ACB=140°,∠ECB=90°,
∴∠ACE=140°﹣90°=50°,
∴∠DCE=90°﹣∠ACE=90°﹣50°=40°,
故答案为:40°;
(2)猜想:∠ACB+∠DCE=180°,
理由如下:∵∠ACE=90°﹣∠DCE,
又∵∠ACB=∠ACE+90°,
∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE,
即∠ACB+∠DCE=180°;
(3)30°、45°.
理由:当CB∥AD时(如图1),
∴∠AFC=∠FCB=90°,
∵∠A=60°,
∴∠ACE=90°-∠A=30°;
当EB∥AC时(如图2),
∴∠ACE=∠E=45°.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于 AB的长为半径画弧,两弧相交于点M、N;②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C等于( )
A.40°
B.50°
C.60°
D.70°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上的一点且GH⊥EG.求证:PF∥GH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A=∠BCD=108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC.
(1)求∠ABC的度数.
(2)请在图中找出与∠ABC相等的角,并说明理由.
(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.
(1)A比B后出发几个小时?B的速度是多少?
(2)在B出发后几小时,两人相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.
(1)求证:CE∥GF;
(2)试判断∠AED与∠D之间的数量关系,并说明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com