精英家教网 > 初中数学 > 题目详情

【题目】将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.

(1)①若∠DCB=45°,则∠ACB的度数为   

若∠ACB=140°,则∠DCE的度数为   

(2)(1)猜想∠ACB与∠DCE的数量关系,并说明理由.

(3)当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值(不必说明理由).

【答案】(1)135°;40°;(2)∠ACB+∠DCE=180°,理由见解析;(3)30°、45°.

【解析】

(1)①根据直角三角板的性质结合DCB45°即可得出∠ACB的度数;

②由∠ACB=140°,∠ECB=90°,可得出∠ACE的度数,进而得出∠DCE的度数;

(2)根据①中的结论可提出猜想,再由∠ACB=ACD+DCB,∠ACB+DCE=90°+DCB+DCE可得出结论;

(3)分CBADEBAC两种情况进行讨论即可.

(1)①∵∠DCB45°ACD90°

∴∠ACBDCB+∠ACD45°+90°135°

故答案为:135°

②∵∠ACB140°ECB90°

∴∠ACE140°90°50°

∴∠DCE90°ACE90°50°40°

故答案为:40°

(2)猜想:ACB+∠DCE180°

理由如下:∵∠ACE90°DCE

∵∠ACBACE+90°

∴∠ACB90°DCE+90°180°DCE

ACB+∠DCE180°

(3)30°45°

理由:当CBAD时(如图1),

∠AFC=∠FCB=90°

∠A=60°

ACE90°-A=30°

EBAC时(如图2),

∴∠ACE=∠E=45°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知∠1=2AC=AD,请增加一个条件,使ABC≌△AED,你添加的条件是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于 AB的长为半径画弧,两弧相交于点M、N;②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C等于(
A.40°
B.50°
C.60°
D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图1,直线MN与直线ABCD分别交于点EF,∠1与∠2互补.

(1)试判断直线ABCD的位置关系,并说明理由;

(2)如图2,∠BEF与∠EFD的角平分线交于点PEPCD交于点G,点HMN上的一点且GHEG.求证:PFGH

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ACBECD都是等边三角形,点A、D、E在同一直线上,连接BE.

(1)求证:AD=BE;

(2)求∠AEB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两条射线AMBN,线段CD的两个端点CD分别在射线BNAM上,且∠ABCD=108°.E是线段AD上一点(不与点AD重合),且BD平分∠EBC

(1)求∠ABC的度数.

(2)请在图中找出与∠ABC相等的角,并说明理由.

(3)若平行移动CD,且ADCD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知甲、乙两地相距90kmAB两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DEOC分别表示AB离开甲地的路程skm)与时间th)的函数关系的图象,根据图象解答下列问题.

1AB后出发几个小时?B的速度是多少?

2)在B出发后几小时,两人相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点EF在直线AB上,点G在线段CD上,EDFG交于点H,∠C=∠EFG,∠CED=∠GHD

1)求证:CEGF

2)试判断∠AED与∠D之间的数量关系,并说明理由;

3)若∠EHF80°,∠D30°,求∠AEM的度数.

查看答案和解析>>

同步练习册答案