精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于 AB的长为半径画弧,两弧相交于点M、N;②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C等于(
A.40°
B.50°
C.60°
D.70°

【答案】A
【解析】解:∵根据作图过程和痕迹发现MN垂直平分AB, ∴DA=DB,
∴∠DBA=∠A=35°,
∵CD=BC,
∴∠CDB=∠CBD=2∠A=70°,
∴∠ABC=70°+35°=105°,
∴∠C=180°﹣105°﹣35°=40°.
故选A.
首先根据作图过程得到MN垂直平分AB,然后利用中垂线的性质得到∠A=∠ABD,然后利用三角形外角的性质求得∠CDB的度数,从而可以求得∠C的度数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】首都国际机场连续五年排名全球最繁忙机场第二位,该机场2012﹣2016年客流量统计结果如表:

年份

2012

2013

2014

2015

2016

客流量(万人次)

8192

8371

8613

8994

9400

根据统计表中提供的信息,预估首都国际机场2017年客流量约万人次,你的预估理由是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:

A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2

∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2

对于上述的两个判断,下列说法正确的是(  )

A. 正确,错误 B. 错误,正确 C. ①,②都错误 D. ①,②都正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.

(1)如图,若点D在线段BC上,点E在线段AC上.
①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°.②求α,β之间的关系式.
(2)是否存在不同于以上②中的α,β之间的关系式?若存在,请求出这个关系式(求出一个即可);若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】建立模型:如图1,已知ABCAC=BCC=90°,顶点C在直线l上.

实践操作:过点AADl于点D,过点BBEl于点E,求证:CADBCE

模型应用:(1)如图2,在直角坐标系中,直线l1y=x+4y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.

(2)如图3,在直角坐标系中,点B(86),作BAy轴于点A,作BCx轴于点CP是线段BC上的一个动点,点Qa2a﹣6)位于第一象限内.问点APQ能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学团委会开展书法、诵读、演讲、征文四个项目(每人只参加一个项目)的比赛,初三(1)班全体同学都参加了比赛,为了解比赛的具体情况,小明收集整理数据后,绘制了以下不完整的折线统计图和扇形统计图,根据图表中的信息解答下列各题:
(1)初三(1)班的总人数为 , 扇形统计图中“征文”部分的圆心角度数为度;
(2)请把折线统计图补充完整;
(3)平平和安安两个同学参加了比赛,请用“列表法”或“画树状图法”,求出他们参加的比赛项目相同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.

(1)①若∠DCB=45°,则∠ACB的度数为   

若∠ACB=140°,则∠DCE的度数为   

(2)(1)猜想∠ACB与∠DCE的数量关系,并说明理由.

(3)当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值(不必说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.
已知:如图1,直线l和直线l外一点P.
求作:直线l的平行直线,使它经过点P.
作法:如图2.

(i)过点P作直线m与直线l交于点O;
(ii)在直线m上取一点A(OA<OP),以点O为圆心,OA长为半径画弧,与直线l交于点B;
(iii)以点P为圆心,OA长为半径画弧,交直线m于点C,以点C为圆心,AB长为半径画弧,两弧交于点D;
(iv)作直线PD.
所以直线PD就是所求作的平行线.
请回答:该作图的依据是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,若点P和点P1关于y轴对称,点P1和点P2关于直线l对称,则称点P2是点P关于y轴,直线l的二次对称点.
(1)如图1,点A(﹣1,0).
①若点B是点A关于y轴,直线l1:x=2的二次对称点,则点B的坐标为
②若点C(﹣5,0)是点A关于y轴,直线l2:x=a的二次对称点,则a的值为
③若点D(2,1)是点A关于y轴,直线l3的二次对称点,则直线l3的表达式为
(2)如图2,⊙O的半径为1.若⊙O上存在点M,使得点M'是点M关于y轴,直线l4:x=b的二次对称点,且点M'在射线y= x(x≥0)上,b的取值范围是
(3)E(t,0)是x轴上的动点,⊙E的半径为2,若⊙E上存在点N,使得点N'是点N关于y轴,直线l5:y= x+1的二次对称点,且点N'在y轴上,求t的取值范围.

查看答案和解析>>

同步练习册答案