【题目】建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.
实践操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E,求证:△CAD≌△BCE.
模型应用:(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.
(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.
【答案】实践操作:详见解析;模型应用:(1)y=x+4;(2)A、P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为或4.
【解析】
操作:根据余角的性质,可得∠ACD=∠CBE,根据全等三角形的判定,可得答案;
应用(1)根据自变量与函数值的对应关系,可得A、B点坐标,根据全等三角形的判定与性质,可得CD,BD的长,根据待定系数法,可得AC的解析式;
(2)分两种情况讨论:①当Q在直线AP的下方时,②当Q在直线AP的上方时.根据全等三角形的性质,可得关于a的方程,根据解方程,可得答案.
操作:如图1:
∵∠ACD+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.
在△ACD和△CBE中,∵,∴△CAD≌△BCE(AAS);
(1)∵直线yx+4与y轴交于点A,与x轴交于点B,∴A(0,4)、B(﹣3,0).如图2:
过点B做BC⊥AB交直线l2于点C,过点C作CD⊥x轴.
在△BDC和△AOB中,∵,∴△BDC≌△AOB(AAS),∴CD=BO=3,BD=AO=4.OD=OB+BD=3+4=7,∴C点坐标为(﹣7,3).
设l2的解析式为y=kx+b,将A,C点坐标代入,得:,解得:,l2的函数表达式为yx+4;
(2)由题意可知,点Q是直线y=2x﹣6上一点.分两种情况讨论:
①当Q在直线AP的下方时,如图3,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F.
在△AQE和△QPF中,∵,∴△AQE≌△QPF(AAS),AE=QF,即6﹣(2a﹣6)=8﹣a,解得:a=4.
②当Q在直线AP的上方时,如图4,过点Q作EF⊥y轴,分别交y轴和直线BC于点E、F,AE=2a﹣12,FQ=8﹣a.
在△AQE和△QPF中,∵,∴△AQE≌△QPF(AAS),AE=QF,即2a﹣12=8﹣a,解得:a.
综上所述:A.P、Q可以构成以点Q为直角顶点的等腰直角三角形,a的值为或4.
科目:初中数学 来源: 题型:
【题目】为了测量校园里水平地面上的一棵大树的高度,数学综合实践活动小组的同学们开展如下活动:某一时刻,测得身高1.6m的小明在阳光下的影长是1.2m,在同一时刻测得这棵大树的影长是3.6m,则此树的高度是m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DEB中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.
(1)判断∠ADC是否是直角,并说明理由;
(2)试求四边形草坪ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于 AB的长为半径画弧,两弧相交于点M、N;②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C等于( )
A.40°
B.50°
C.60°
D.70°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上的一点且GH⊥EG.求证:PF∥GH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A=∠BCD=108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC.
(1)求∠ABC的度数.
(2)请在图中找出与∠ABC相等的角,并说明理由.
(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,二次函数y=mx2﹣(2m+1)x+m﹣5的图象与x轴有两个公共点.
(1)求m的取值范围;
(2)若m取满足条件的最小的整数, ①写出这个二次函数的解析式;
②当n≤x≤1时,函数值y的取值范围是﹣6≤y≤4﹣n,求n的值;
③将此二次函数平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x﹣h)2+k,当x<2时,y随x的增大而减小,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com