【题目】为了测量校园里水平地面上的一棵大树的高度,数学综合实践活动小组的同学们开展如下活动:某一时刻,测得身高1.6m的小明在阳光下的影长是1.2m,在同一时刻测得这棵大树的影长是3.6m,则此树的高度是m.
科目:初中数学 来源: 题型:
【题目】某校为了解学生对“A:古诗词,B:国画,C:京剧,D:书法”等中国传统文化项目的最喜爱情况,在全校范围内随机抽取部分学生进行问卷调查(每人限选一项),并将调查结果绘制成如下不完整的统计图.
请结合统计图回答下列问题:
(1)在这次调查中,一共调查了名学生;在扇形统计图中,项目B对应扇形的圆心角是度;
(2)如果该校共有2000名学生,请估计该校最喜爱项目A的学生有多少人?
(3)若该校在A、B、C、D四项中任选两项成立课外兴趣小组,请用画树状图(或列表)计算恰好选中项目A和D的概率.
故答案为:200,72;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(0,6),B(8,0),AB=10,如图作∠DBO=∠ABO,∠CAy=∠BAO,BD交y轴于点E,直线DO交AC于点C.
(1)①求证:△ACO≌△EDO;②求出线段AC、BD的位置关系和数量关系;
(2)动点P从A出发,沿A﹣O﹣B路线运动,速度为1,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A运动,速度为2,到A点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PE⊥CD于点E,QF⊥CD于点F.问两动点运动多长时间时△OPE与△OQF全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果两个等腰三角形的顶角互补,顶角的顶点又是同一个点,而且它们的腰也分别相等,则称这两个三角形互为“顶补等腰三角形”.
(1)如图1,若△ABC与△ADE互为“顶补等腰三角形”.∠BAC>90°,AM⊥BC于M,AN⊥ED于N.求证:DE=2AM;
(2)如图2,在四边形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,在四边形ABCD的内部是否存在点P,使得△PAD与△PBC互为“顶补等腰三角形”?若存在,请给予证明,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 已知∠1+∠2=180o, ∠3=∠B, 试说明∠DEC+∠C=180o. 请完成下列填空:
解:∵∠1+∠2=180o(已知)
又∵∠1+ =180o(平角定义)
∴∠2= (同角的补角相等)
∴ (内错角相等,两直线平行)
∴∠3 = (两直线平行,内错角相等)
又∵∠3=∠B(已知)
∴ (等量代换)
∴ ∥ ( )
∴∠DEC+∠C=180o( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】首都国际机场连续五年排名全球最繁忙机场第二位,该机场2012﹣2016年客流量统计结果如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
客流量(万人次) | 8192 | 8371 | 8613 | 8994 | 9400 |
根据统计表中提供的信息,预估首都国际机场2017年客流量约万人次,你的预估理由是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=20°,则∠AOB等于( ).
A. 50° B. 40° C. 30° D. 20°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,点E是对角线AC上的动点(与点A,C不重合),连接BE.
(1)将射线BE绕点B顺时针旋转45°,交直线AC于点F.
①依题意补全图1;
②小研通过观察、实验,发现线段AE,FC,EF存在以下数量关系:
AE与FC的平方和等于EF的平方.小研把这个猜想与同学们进行交流,通过讨论,形成证明该猜想的几种想法:
想法1:将线段BF绕点B逆时针旋转90°,得到线段BM,要证AE,FC,EF的关系,只需证AE,AM,EM的关系.
想法2:将△ABE沿BE翻折,得到△NBE,要证AE,FC,EF的关系,只需证EN,FN,EF的关系.
…
请你参考上面的想法,用等式表示线段AE,FC,EF的数量关系并证明;(一种方法即可)
(2)如图2,若将直线BE绕点B顺时针旋转135°,交直线AC于点F.小研完成作图后,发现直线AC上存在三条线段(不添加辅助线)满足:其中两条线段的平方和等于第三条线段的平方,请直接用等式表示这三条线段的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.
实践操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E,求证:△CAD≌△BCE.
模型应用:(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.
(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com