【题目】如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A、B重合),另一直角边与∠CBM的平分线BF相交于点F.
(1)如图1,当点E在AB边得中点位置时:
①通过测量DE、EF的长度,猜想DE与EF满足的数量关系是 .
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是 ,请证明你的猜想.
(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.
【答案】(1)①DE=EF;②NE=BF;理由见解析;(2)DE=EF,理由见解析.
【解析】试题分析:(1)根据正方形的性质及N,E分别为AD,AB的中点可得DN=EB,再根据角平分线的性质及AN=AE可得∠DNE=∠EBF=135°,从而可证得△DNE≌△EBF,继而证得结论;
(2)在DA边上截取DN=EB,连结NE,点N就使得NE=BF成立,由DN=EB可得AN=AE,根据角平分线的性质可得∠DNE=∠EBF=90°+45°=135°,通过证△DNE≌△EBF,从而得结论.
(1)①DE=EF;②NE=BF;理由如下:
∵四边形ABCD为正方形,∴AD=AB,∠DAB=∠ABC=90°,∵N,E分别为AD,AB中点,
∴AN=DN=AD,AE=EB=AB,∴DN=BE,AN=AE,∵∠DEF=90°,∴∠AED+∠FEB=90°,
又∵∠ADE+∠AED=90°,∴∠FEB=∠ADE,又∵AN=AE,∴∠ANE=∠AEN,又∵∠A=90,∴∠ANE=45°,∴∠DNE=180°﹣∠ANE=135°,又∵∠CBM=90°,BF平分∠CBM,
∴∠CBF=45°,∠EBF=135°,在△DNE和△EBF中, ∴△DNE≌△EBF(ASA),∴DE=EF,NE=BF.
(2)DE=EF,理由如下:
在DA边上截取DN=EB,连接NE,∵四边形ABCD是正方形,DN=EB,∴AN=AE,∴△AEN为等腰直角三角形,∴∠ANE=45°,∴∠DNE=180°﹣45°=135°,∵BF平分∠CBM,AN=AE,∴∠EBF=90°+45°=135°,∴∠DNE=∠EBF, ∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF,在△DNE和△EBF中,∴△DNE≌△EBF(ASA), ∴DE=EF.
科目:初中数学 来源: 题型:
【题目】同学们都知道表示5与(-2)之差的绝对值,也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:
(1) 求= ;
(2) 使得=3成立的数是 ;
(3) 由以上探索猜想,对于任何有理数x,则最小值是 ;
(4)由以上探索猜想,使得的成立的整数x是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1);
(2);
(3)(-36)÷(+12)-(-4)×(-0.5);
(4)(1-+)×(-48);
(5);
(6);
(7);
(8)18+42÷(-2)-(-3)2×5;
(9)×[-32÷(-)2+(-2)3] ;
(10);
(11)
(12)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,直线y=-x+3与x轴相交于点A,与y轴相交于点B,点C(m,n)是第二象限内一点,以点C为圆心的圆与x轴相切于点E,与直线AB相切于点F.
(1)当四边形OBCE是矩形时,求点C的坐标;
(2)如图②,若⊙C与y轴相切于点D,求⊙C的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,点在线段上运动(不与、重合),连接,作,交线段于.
(1)当时,= ,= ;点从向运动时,逐渐 (填“增大”或“减小”);
(2)当等于多少时,,请说明理由;
(3)在点的运动过程中,的形状可以是等腰三角形吗?若可以,请直接写出的度数.若不可以,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中, , ,将绕点沿逆时针方向旋转得到.
(1)线段的长是 , 的度数是 ;
(2)连结,求证:四边形是平行四边形;
(3)求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=a-4x+c的图像经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于半圆,AB是直径,过A作直线MN,若∠MAC=∠ABC.
(1)求证:MN是半圆的切线;
(2)设D是弧AC的中点,连结BD交AC 于G,过D作DE⊥AB于E,交AC于F.求证:FD=FG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=90°,AB=AC,∠ABC的角平分线交AC于D,BD=4,过点C作CE⊥BD交BD的延长线于E,则CE的长为( )
A.B.2C.3D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com