精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,∠A90°ABAC,∠ABC的角平分线交ACDBD4,过点CCEBDBD的延长线于E,则CE的长为(  )

A.B.2C.3D.2

【答案】B

【解析】

延长CEBA延长线交于点F,首先证明△BAD≌△CAF,根据全等三角形的性质可得BDCF,再证明△BEF≌△BCE可得CEEF,进而可得CEBD,即可得出结果.

证明:延长CEBA延长线交于点F

∵∠BAC90°CE⊥BD

∴∠BAC∠DEC

∵∠ADB∠CDE

∴∠ABD∠DCE

△BAD△CAF中,

∴△BAD≌△CAFASA),

∴BDCF

∵BD平分∠ABCCE⊥DB

∴∠FBE∠CBE

△BEF△BCE中,

∴△BEF≌△BCEAAS),

∴CEEF

∴DB2CE,即CEBD×42

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,四边形ABCD是正方形,MAB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点EAB边上滑动(点E不与点AB重合),另一直角边与∠CBM的平分线BF相交于点F

1)如图1,当点EAB边得中点位置时:

通过测量DEEF的长度,猜想DEEF满足的数量关系是

连接点EAD边的中点N,猜想NEBF满足的数量关系是 ,请证明你的猜想.

2)如图2,当点EAB边上的任意位置时,猜想此时DEEF有怎样的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

1)(﹣5)﹣(+3)+(﹣9)﹣(﹣7

2)(+5)+(﹣3)-(﹣6)-(+15

(3) (-)÷(-)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,∠BAD60°

(1) 如图1,点E为线段AB的中点,连接DECE.若AB4,求线段EC的长

(2) 如图2M为线段AC上一点(不与AC重合),以AM为边向上构造等边三角形AMN,线段MNAD交于点G,连接NCDMQ为线段NC的中点,连接DQMQ,判断DMDQ的数量关系,并证明你的结论

(3) (2)的条件下,若AC,请你直接写出DMCN的最小值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王上周五在股市上以收盘价(收市时的价格)每股25元买进某公司股票1 000股,在接下来的一周交易日内,小王记下该股票每日收盘价相比前一天的涨跌情况:(单位:元)

根据上表回答问题:

1)星期二收盘时,该股票每股______.

2)本周内股票收盘时的最高价______.

3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费,若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.

(1)写出你所知道的四边形中是勾股四边形的两种图形的名称__________

(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连接AD、DC,若∠DCB=30°,试证明;DC2+BC2=AC2.(即四边形ABCD是勾股四边形)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:三点A(-1,1),B(-3,2),C(-4,-1).

(1)作出与△ABC关于原点对称的△A1B1C1,并写出各顶点的坐标;

(2)作出与△ABC关于P(1,-2)点对称的△A2B2C2,并写出各顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=m﹣2xm2+m-4 +2x﹣1是一个二次函数,求该二次函数的解析式.

【答案】y=﹣5x2+2x﹣1

【解析】试题分析:根据二次函数的定义得到m2+m﹣4=2m﹣2≠0,由此求得m的值,进而得到该二次函数的解析式.

试题解析:依题意得:m2+m﹣4=2m﹣2≠0即(m﹣2)(m+3=0m﹣2≠0

解得m=﹣3

则该二次函数的解析式为y=﹣5x2+2x﹣1

型】解答
束】
21

【题目】如图,在ABCD中,EF∥AB,FG∥ED,DE:DA=2:5,EF=4,求线段CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的两边在坐标轴上,点A的坐标为(100),抛物线y=ax2+bx+4过点BC两点,且与x轴的一个交点为D﹣20),点P是线段CB上的动点,设CP=t0t10).

1)请直接写出BC两点的坐标及抛物线的解析式;

2)过点PPE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBERt△OCD中的一个角相等

3)点Qx轴上的动点,过点PPM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,求t的值.

查看答案和解析>>

同步练习册答案