【题目】过反比例函数()图像上一动点M作MN⊥x轴交x轴于点N,Q是直线MN上一点,且MQ=2MN,过点Q作QR∥轴交该反比例函数图像于点R,已知S△QRM=8,那么k的值为_____.
【答案】12或4
【解析】
由k>0,可知点M在第一象限或第三象限,设点M的坐标为(m,),分别讨论点Q所在象限,根据MQ=2MN,用m、k表示出点Q和点R的坐标,利用S△QRM=8,即可得出k的值.
∵k>0,
∴点M在第一象限或第三象限,
点M在第一象限时,设点M的坐标为(m,),
①如图,当点Q在第一象限时,
∵MQ=2MN,
∴QN=3MN,
∴点Q坐标为(m,),
∵QR//x轴,点R在反比例函数上,
∴点R坐标为(,),
∴QR=m-=,QM=-=,
∵S△QRM=8,
∴=8,
解得:k=12.
②如图,当点Q在第四象限时,
∵MQ=2MN,
∴MN=NQ,
∴点Q坐标为(m,-),
∵QR//x轴,点R在反比例函数上,
∴点R坐标为(-m,-),
∴QR=m-(-m)=2m,QM=-(-)=,
∵∵S△QRM=8,
∴2m=8,
解得:k=4,
同理可得:点M在第三象限时k=4或k=12,
综上所述:k的值为12或4.
故答案为:12或4.
科目:初中数学 来源: 题型:
【题目】如图,边长为3的正方形OABC的两边在两坐标轴上,抛物线y=-x2+bx+c经过点A,C,与x轴交于另一点D,P为第一象限内抛物线上一点,过P点作y轴的平行线交x 轴于点Q,交AC于点E.
(1)求抛物线解析式及点D的坐标;
(2)过E点作x轴的平行线交AB于点F,若以P,E,F为顶点的三角形与△ODC相似,求点P坐标;
(3)过P点作PH⊥AC于H,是否存在点P使△PEH的周长取得最大值,若存在,请求出点P坐标及△PEH周长的最大值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB,AC边的垂直平分线分别交BC于点D,E,垂足分别为点F,G,△ADE的周长为6cm.
(1)求△ABC中BC边的长度;
(2)若∠BAC=116°,求∠DAE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下面的知识,后解答后面的问题:
探究:如图,在△ABC中,已知∠B=∠C,求证:AB=AC.
证明:过点A作AD⊥BC,垂足为D, 在△ABD与△ACD中,
∠B=∠C, , , 所以△ABD≌△ACD( ),所以AB=AC.
(1)完成上述证明中的空白;
(2)已知如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠CAB.试问:AC+CD与AB相等吗?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在某笔直路段MN内小车行驶的最高限速60千米/小时.交通部门为了检测车辆是否在此路段超速行驶,在公路MN旁设立了观测点C,已知∠CAN=45°,∠CBN=60°,BC=120米.
(1)求测速点C到该公路的距离;
(2)若测得一小车从A点到达点B行驶了3秒,请通过计算判断此车是否超速.(参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把下列各数分别填人相应的集合里.
﹣5,﹣2.626626662…,0,﹣π,﹣,0.12,﹣(﹣6).
(1)正数集合:{____________________…};
(2)无理数集合:{___________________ …};
(3)负整数集合:{__________________…};
(4)分数集合:{___________________ …}.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB组成的∠AOB的平分线OT落在∠MON的内部或边OM、ON上,则称射线OA与射线OB关于∠MON内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称
已知:如图2,在平面内,∠AOM=10°,∠MON=20°
(1)若有两条射线,的位置如图3所示,且,,则在这两条射线中,与射线OA关于∠MON内含对称的射线是_____________
(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON内含对称,设∠COM=x°,求x的取值范围;
(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且.若∠FOE的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON内含对称,直接写出t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com