【题目】在Rt△ABC中,AC=3,BC=4,点P是斜边AB上一点,若△PAC是等腰三角形,则线段AP的长可能为____.
科目:初中数学 来源: 题型:
【题目】随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起,高铁大大缩短了时空距离,改变了人们的出行方式,如图两地被大山阻隔,由地到地需要绕行地,若打通穿山隧道由地到地,再由地到地可大大缩短路程.,,,公里,公里,求隧道打通后与打通前相比,从地到地的路程将约缩短多少公里?(参考数据:,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,AB=4,BC=2,正方形ADEF的边长为2,F、A、B在同一直线上,正方形ADEF向右平移到点F与B重合,点F的平移距离为x,平移过程中两图重叠部分的面积为y,则y与x的关系的函数图象表示正确的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数在第一象限的图象经过顶点A(m,m+3)和CD上的点E,且OB-CE=1。直线l过O、E两点,则tan∠EOC的值为( )
A. B. 5 C. D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017江西省)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.
(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;
(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?
(参考数据:sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有结果精确到个位)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果,⊙O是△ABC的外接圆,∠A=45°,BD∥OC交AC的延长线于点D.
(1)求证:BD是⊙O的切线;
(2)若∠D=30°,OC=2.
①求∠ABC的度数;
②求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在等腰三角形ABC中,AB=AC=8,BC=14.如图②,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图③,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在Rt△ABC和Rt△ABD中,∠ACB=90°,∠ABD=90°,AB=BD,BC=4,(点A、D分别在直线BC的上下两侧),点G是Rt△ABD的重心,射线BG交边AD于点E,射线BC交边AD于点F.
(1)求证:∠CAF=∠CBE;
(2)当点F在边BC上,AC=1时,求BF的长;
(3)若△BGC是以BG为腰的等腰三角形,试求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=60°,AD平分∠BAC交边BC于点D,分别过D作DE∥AC交边AB于点E,DF∥AB交边AC于点F.
(1)如图1,试判断四边形AEDF的形状,并说明理由;
(2)如图2,若AD=4,点H,G分别在线段AE,AF上,且EH=AG=3,连接EG交AD于点M,连接FH交EG于点N.
(i)求ENEG的值;
(ii)将线段DM绕点D顺时针旋转60°得到线段DM′,求证:H,F,M′三点在同一条直线上
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com