精英家教网 > 初中数学 > 题目详情

【题目】在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.
(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;

(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2

(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.

【答案】
(1)

证明:∵△ADF绕着点A顺时针旋转90°,得到△ABG,

∴AF=AG,∠FAG=90°,

∵∠EAF=45°,

∴∠GAE=45°,

在△AGE与△AFE中,

∴△AGE≌△AFE(SAS);


(2)

证明:设正方形ABCD的边长为a.

将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.

则△ADF≌△ABG,DF=BG.

由(1)知△AEG≌△AEF,

∴EG=EF.

∵∠CEF=45°,

∴△BME、△DNF、△CEF均为等腰直角三角形,

∴CE=CF,BE=BM,NF= DF,

∴a﹣BE=a﹣DF,

∴BE=DF,

∴BE=BM=DF=BG,

∴∠BMG=45°,

∴∠GME=45°+45°=90°,

∴EG2=ME2+MG2

∵EG=EF,MG= BM= DF=NF,

∴EF2=ME2+NF2


(3)

解:EF2=2BE2+2DF2

如图所示,延长EF交AB延长线于M点,交AD延长线于N点,

将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.

由(1)知△AEH≌△AEF,

则由勾股定理有(GH+BE)2+BG2=EH2

即(GH+BE)2+(BM﹣GM)2=EH2

又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2

即2(DF2+BE2)=EF2


【解析】(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF= DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2 , 等量代换即可证明EF2=ME2+NF2;(3)延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,结合勾股定理以及相等线段可得(GH+BE)2+(BE﹣GH)2=EF2 , 所以2(DF2+BE2)=EF2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若代数式3x﹣1的值大于3﹣x,则x的取值范围是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将数2020000用科学记数法表示为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法:①35=3×3×3×3×3;②﹣1是单项式,且它的次数为1;③若∠1=90°﹣∠2,则∠1与∠2互为余角;④对于有理数n、x、y(其中xy≠0),若 = ,则x=y.其中不正确的有(
A.3个
B.2个
C.1个
D.0个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=,∠BAD=60°,且AB>

(1)求∠EPF的大小;

(2)若AP=10,求AE+AF的值;

(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)(- 2÷( 2÷│-6│2×(- 2
(2)解方程: (x+15)= (x﹣7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)(﹣36 )÷9
(2)(﹣ )×(﹣3 )÷(﹣1 )÷3.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答下列各题
(1)解方程: =
(2)先化简,再求值: ,其中a2+3a﹣1=0.

查看答案和解析>>

同步练习册答案