【题目】如图,在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.
(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.
【答案】
(1)
解:∵抛物线y=﹣ x2+bx+c与x轴交于点A(1,0),与y轴交于点B(0,4),
∴ ,解得 ,
∴抛物线的解析式为y=﹣ x2﹣ x+4
(2)
解:∵E(m,0),B(0,4),PE⊥x轴交抛物线于点P,交BC于点G,
∴P(m,﹣ m2﹣ m+4),G(m,4),
∴PG=﹣ m2﹣ m+4﹣4=﹣ m2﹣ m;
点P在直线BC上方时,故需要求出抛物线与直线BC的交点,
令4=﹣ m2﹣ m+4,解得m=﹣2或0,
即m的取值范围:﹣2<m<0,
PG的长度为:﹣ m2﹣ m(﹣2<m<0)
(3)
解:在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似.
∵y=﹣ x2﹣ x+4,
∴当y=0时,﹣ x2﹣ x+4=0,
解得x=1或﹣3,
∴D(﹣3,0).
当点P在直线BC上方时,﹣2<m<0.
设直线BD的解析式为y=kx+4,
将D(﹣3,0)代入,得﹣3k+4=0,
解得k= ,
∴直线BD的解析式为y= x+4,
∴H(m, m+4).
分两种情况:
①如果△BGP∽△DEH,那么 ,
即 = ,
解得m=﹣3或﹣1,
由﹣2<m<0,故m=﹣1;
②如果△PGB∽△DEH,那么 ,
即 = ,
由﹣2<m<0,解得m=﹣ .
综上所述,在(2)的条件下,存在点P,使得以P、B、G为顶点的三角形与△DEH相似,此时m的值为﹣1或﹣ .
【解析】(1)将A(1,0),B(0,4)代入y=﹣ x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)由E(m,0),B(0,4),得出P(m,﹣ m2﹣ m+4),G(m,4),则PG=﹣ m2﹣ m+4﹣4=﹣ m2﹣ m,点P在直线BC上方时,故需要求出m的取值范围;(3)先由抛物线的解析式求出D(﹣3,0),则当点P在直线BC上方时,﹣2<m<0.再运用待定系数法求出直线BD的解析式为y= x+4,于是得出H(m, m+4).当以P、B、G为顶点的三角形与△DEH相似时,由于∠PGB=∠DEH=90°,所以分两种情况进行讨论:①△BGP∽△DEH;②△PGB∽△DEH.都可以根据相似三角形对应边成比例列出比例关系式,进而求出m的值.
【考点精析】关于本题考查的二次函数的性质,需要了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:
①乙比甲提前12分钟到达;
②甲的平均速度为15千米/小时;
③乙走了8km后遇到甲;
④乙出发6分钟后追上甲.
其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.
(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;
(2)设∠BAO的外角和∠ABO的外角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC的各边都延长一倍至A′、B′、C′,连接这些点,得到一个新的三角形△A′B′C′,若△ABC的面积为1,则△A′B′C′的面积是( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)将△ABD平移,使D沿BD延长线移至C得到△A′B′D′,A′B′交AC于E,AD平分∠BAC.
(1)猜想∠B′EC与∠A′之间的关系,并写出理由.
(2)如图将△ABD平移至如图(2)所示,得到△A′B′D′,请问:A′D平分∠B′A′C吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.
例如:因为23=8,所以(2,8)=3.
(1)根据上述规定,填空:
(3,27)=_______,(5,1)=_______,(2, )=_______.
(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:
设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n
所以3x=4,即(3,4)=x,
所以(3n,4n)=(3,4).
请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com