【题目】如图所示,已知四边形ABCD、ADEF都是菱形,∠BAD=∠FAD, ∠BAD为锐角.
(1)求证:AD⊥BF;
(2)若BF=BC,求∠ADC的度数。
【答案】
(1)证明:∵四边形ABCD是菱形,
∴AB=AD,
又∵四边形ADEF是菱形,
∴AF=AD,
∴AB=AF,
∵∠BAD=∠FAD,
∴AD⊥BF.
(2)解:∵四边形ABCD、ADEF都是菱形,
∴AB=BC=AF,
∵BF=BC,
∴AB=AF= BF,
∴△ABF是等边三角形,
∴∠BAF=60°,
∵∠BAD=∠FAD,
∴∠BAD=30°,
∵四边形ABCD是菱形,
∴AB//CD,
∴∠BAD+∠ADC=180°,
∴∠ADC=150°.
【解析】(1)由菱形的性质得AB=AD,AF=AD,等量代换得AB=AF,又∠BAD=∠FAD,根据等腰三角形三线合一的性质得AD⊥BF.
(2)由菱形的性质得AB=BC=AF,又BF=BC,等量代换得AB=AF= BF,由等边三角形的判定知△ABF是等边三角形,根据等边三角形和菱形的性质得
∠BAD=30°,由菱形和平行线的性质得∠ADC=150°.
【考点精析】利用等腰三角形的性质和菱形的性质对题目进行判断即可得到答案,需要熟知等腰三角形的两个底角相等(简称:等边对等角);菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.
科目:初中数学 来源: 题型:
【题目】如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA1B1 , 则点A1的坐标为( )
A.( ,1)
B.( ,-1)
C.(-1, )
D.(2,1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠α和∠β互补,且∠α>∠β,下列表示角的式子:①90°-∠β;②∠α-90°;③(∠α+∠β);④(∠α-∠β).其中能表示∠β的余角的有( )个.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明将两块完全相同的直角三角形纸片的直角顶点C叠放在一起,若保持△BCD不动,将△ACE绕直角顶点C旋转.
(1)如图1,如果CD平分∠ACE,那么CE是否平分∠BCD?答:______(填写“是”或“否”);
(2)如图1,若∠DCE=35,则∠ACB=______;若∠ACB=140,则∠DCE=______;
(3)当△ACE绕直角顶点C旋转到如图1的位置时,猜想∠ACB与∠DCE的数量关系,并说明理由;
(4)当△ACE绕直角顶点C旋转到如图2的位置时,上述关系是否依然成立,请说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)在一次测量旗杆高度的活动中,某小组使用的方案如下:AB表示某同学从眼睛到脚底的距离,CD表示一根标杆,EF表示旗杆,AB、CD、EF都垂直于地面。若AB=1.6m,CD=2m,人与标杆之间的距离BD=1m,标杆与旗杆之间的距离DF=30m,求旗杆EF的高度。
(2)如图在平面直角坐标系中,A点坐标为(8,0),B点坐标为(0,6),点C是线段AB的中点。请问在x轴上是否存在一点P,使得以P、A、C为顶点的三角形与△AOB相似?若存在,求出P点坐标(写出计算的过程);若不存在,说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,直线,点为平面上一点,连接与.
(1)如图1,点在直线、之间,当,时,求.
(2)如图2,点在直线、之间左侧,与的角平分线相交于点,写出与之间的数量关系,并说明理由.
(3)如图3,点落在下方,与的角平分线相交于点,与有何数量关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为( )
A.5
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com