精英家教网 > 初中数学 > 题目详情

【题目】已知:以O为圆心的扇形AOB中,∠AOB=90°,点C为 上一动点,射线AC交射线OB于点D,过点D作OD的垂线交射线OC于点E,联结AE.

(1)如图1,当四边形AODE为矩形时,求∠ADO的度数;
(2)当扇形的半径长为5,且AC=6时,求线段DE的长;
(3)联结BC,试问:在点C运动的过程中,∠BCD的大小是否确定?若是,请求出它的度数;若不是,请说明理由.

【答案】
(1)解:如图1中,

∵四边形ABCD是矩形,

∴AD=EC,AC=CD,OC=CE,∠AOD=90°

∴AC=OC=OA,

∴△AOC是等边三角形,

∴∠OAD=60°,

∴∠ADO=90°﹣∠OAD=30°.


(2)解:如图2中,作OH⊥AD于H.

∵OA=OC,OH⊥AC,

∴AH=HC=3,

∵∠OAH=∠OAD,∠AHO=∠AOD,

∴△AOH∽△ADO,

=

=

∴AD=

∴CD=AD﹣AC=

∵DE⊥OD,

∴∠EDO=90°,

∴∠AOD+∠EDO=180°,

∴DE∥OA,

=

=

∴DE=


(3)解:如图3中,结论:∠BCD的值是确定的.∠BCD=45°.

理由:连接AB、BC.

∵∠BCD=∠BAC+∠ABC,

又∵∠BAC= ∠BOC,∠ABC= ∠AOC,

∴∠BCD= ∠BOC+ ∠AOC= (∠BCO+∠AOC)= ×90°=45°.


【解析】(1)利用矩形的性质,只要证明△OAC是等边三角形即可求解题中问题;(2)作OH⊥AD于H.由△AOH∽△ADO,推出=,可得AD的长度,CD=AD﹣AC的长度,由DE∥OA,可得=,即可求出DE;(3)结论:∠BCD的值是确定的.∠BCD=45°.连接AB、BC.由∠BCD=∠BAC+∠ABC,又∠BAC= ∠BOC,∠ABC= ∠AOC,即可得出结论。
【考点精析】掌握矩形的性质和平行线分线段成比例是解答本题的根本,需要知道矩形的四个角都是直角,矩形的对角线相等;三条平行线截两条直线,所得的对应线段成比例.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下面四个图形中,既是中心对称图形又是轴对称图形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ADBCCEAB,垂足分别为DEADCE交于点H,请你添加一个适当的条件:_____,使AEH≌△CEB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm,宽为ncm)的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )

A.4m cmB.4n cmC.2(mn) cmD.4(mn) cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AD平分∠BAC,

(1)求作⊙O,圆心O是AD的中垂线与AB的交点,OD为半径.(尺规作图,不写作法,保留痕迹)
(2)求证:BC是⊙O切线.
(3)若BD=5,DC=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的面积为16cm2,对交线交于点O;以AB、AO为邻边作平行四边AOC1B,对角线交于点O1,以AB、AO1为邻边作平行四边形AO1C2B,…;依此类推,则平行四边形AO4C5B的面积为( )

A. cm2 B. 1cm2 C. 2cm2 D. 4cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表是橘子的销售额随橘子卖出质量的变化表:

质量/千克

1

2

3

4

5

6

7

8

9

销售额/元

2

4

6

8

10

12

14

16

18

1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

2)当橘子卖出5千克时,销售额是_______元.

3)如果用表示橘子卖出的质量,表示销售额,按表中给出的关系,之间的关系式为______.

4)当橘子的销售额是100元时,共卖出多少千克橘子?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,两正方形在数轴上运动,起始状态如图所示.AF表示的数分别为-210,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:

1)求起始位置DE表示的数;

2)求两正方形运动的速度;

3MN分别是ADEF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直线互相垂直时,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习过程中,对教材中的一个有趣问题做如下探究:

(习题回顾)已知:如图1,在中,是角平分线,是高,相交于点.求证:

(变式思考)如图2,在中,边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则还相等吗?说明理由;

(探究延伸)如图3,在中,上存在一点,使得的平分线于点.的外角的平分线所在直线的延长线交于点.直接写出的数量关系.

查看答案和解析>>

同步练习册答案