精英家教网 > 初中数学 > 题目详情

【题目】已知,两正方形在数轴上运动,起始状态如图所示.AF表示的数分别为-210,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:

1)求起始位置DE表示的数;

2)求两正方形运动的速度;

3MN分别是ADEF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直线互相垂直时,求MN的长.

【答案】106;(2)小正方形速度2个单位/秒,大正方形速度1个单位/秒;(3t=2 MN=3t=6 MN=9

【解析】

1)利用图象和正方形的边长即可得出;

2)设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,然后列方程计算即可;

3)由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°
两种情况,根据两种情况分别讨论即可.

1)∵AF表示的数分别为-210,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,

D表示的数为:-2+2=0E表示的数为:10-4=6

2)解:设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,

则有22x+x=2+4

解得:x=1

∴小正方形的速度是2个单位/秒,

故小正方形速度2个单位/秒,大正方形速度1个单位/秒;

3)设运动时间为t

由题意可得若想要两射线所在直线互相垂直,

则有①15°t+30°t=90°或②15°t+30°t=270°

15°t+30°t=90°,解得t=2

此时小正方形运动了4个单位,D点在数字4的位置,大正方形运动了2个单位,E点也在数字4的位置,即DE重合,

MN分别是ADEF中点,
MN=3
②15°t+30°t=270°,解得t=6
此时小正方形运动了12个单位,D点在数字12的位置,大正方形运动了6个单位,E点在数字0的位置,

MN分别是ADEF中点,

∴此时M点位于数字11的位置,N点位于数字2的位置,

MN=11-2=9

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=4cm,AD=6cm,延长AB到E,使BE=2AB,连接CE,动点F从A出发以2cm/s的速度沿AE方向向点E运动,动点G从E点出发,以3cm/s的速度沿E→C→D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止,设动点运动的时间为t秒.

(1)当t为何值时,FC与EG互相平分;
(2)连接FG,当t< 时,是否存在时间t使△EFG与△EBC相似?若存在,求出t的值;若不存在,请说明理由.
(3)设△EFG的面积为y,求出y与t的函数关系式,求当t为何值时,y有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:以O为圆心的扇形AOB中,∠AOB=90°,点C为 上一动点,射线AC交射线OB于点D,过点D作OD的垂线交射线OC于点E,联结AE.

(1)如图1,当四边形AODE为矩形时,求∠ADO的度数;
(2)当扇形的半径长为5,且AC=6时,求线段DE的长;
(3)联结BC,试问:在点C运动的过程中,∠BCD的大小是否确定?若是,请求出它的度数;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是( )

A.∠C=∠AED
B.
C.∠B=∠D
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂准备购买AB两种零件,已知A种零件的单价比B种零件的单价多30元,而用900元购买A种零件的数量和用600元购买B种零件的数量相等.

1)求AB两种零件的单价;

2)根据需要,工厂准备购买AB两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点在直线上,

1)直线解析式为

2)画出该一次函数的图象;

3)将直线向上平移个单位长度得到直线轴的交点的坐标为

4)直线与直线相交于点点坐标为

5)三角形ABC的面积为

6)由图象可知不等式的解集为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=﹣x+2的图象与反比例函数y2= 的图象相交于A,B两点,点B的坐标为(2m,﹣m).

(1)求出m值并确定反比例函数的表达式;
(2)请直接写出当x<m时,y2的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y1= (a>0,a为常数)和y2= 在第一象限内的图象如图所示,点M在y2= 的图象上,MC⊥x轴于点C,交y1= 的图象于点A;MD⊥y轴于点D,交y1= 的图象于点B,当点M在y2= 的图象上运动时,以下结论:
①SODB=SOCA
②四边形OAMB的面积为2﹣a;
③当a=1时,点A是MC的中点;
④若S四边形OAMB=SODB+SOCA , 则四边形OCMD为正方形.
其中正确的是 . (把所有正确结论的序号都填在横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】福田区某轿车销售公司为龙泉工业区代销 A 款轿车,为了吸引购车族,销售公司打出降价牌,今年 5月份A款轿车每辆售价比去年同期每辆售价低 1万元,如果卖出相同数量的 A 款轿车,去年的销售额为100万元,今年销售额只有90万元.
(1)今年 5月份 A 款轿车每辆售价为多少元?
(2)为了增加收入,该轿车公司决定再为龙泉工业区代销 B款轿车,已知 A款轿车每辆进价为 7.5万元,B款轿车每辆进价为 6万元,公司预计用不多于105万元的资金购进这两款轿车共 15 辆,但A款轿车不多于6辆,试问共有几种进货方案?
(3)在⑵的条件下,B款轿车每辆售价为 8万元,为打开B款轿车的销路,公司决定每售出一辆 B款轿车,返还顾客现金a( 0<a ≤1 )万元.假设购进的15辆车能够全部卖出去,试讨论采用哪种进货方案可以使该轿车销售公司卖出这 15辆车后获得最大利润?

查看答案和解析>>

同步练习册答案