精英家教网 > 初中数学 > 题目详情

【题目】已知点在直线上,

1)直线解析式为

2)画出该一次函数的图象;

3)将直线向上平移个单位长度得到直线轴的交点的坐标为

4)直线与直线相交于点点坐标为

5)三角形ABC的面积为

6)由图象可知不等式的解集为

【答案】1;(2)图象见解析;(3;(4;(5;(6

【解析】

(1)根据点在直线上,把点A代入解析式即可求解;

(2),则;令,则,据此可求得函数图像;

(3)根据平移规律可得的解析式为,进而得到

(4) 解方程组,可得;进而得到

(5) 由,可得

(6)由图像可知不等式的解集.

解:(1在直线上,

,即

直线解析式为:

故答案为:

2)令,则;令,则

函数图象如图:

3)将直线向上平移个单位长度得到直线,则的解析式为

时,

解得

故答案为:

4)由题可得,直线的解析式为

解方程组,可得

故答案为:

5)由,可得

故答案为:

6)由图象可知不等式的解集为:

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】学校校内有一块如图所示的三角形空地ABC,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价为60元,学校修建这个花园需要投资多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的面积为16cm2,对交线交于点O;以AB、AO为邻边作平行四边AOC1B,对角线交于点O1,以AB、AO1为邻边作平行四边形AO1C2B,…;依此类推,则平行四边形AO4C5B的面积为( )

A. cm2 B. 1cm2 C. 2cm2 D. 4cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,其图象的一部分如图所示则①abc<0;②a﹣b+c<0;③3a+c<0;④当﹣1<x<3时,y>0.其中判断正确的有( )个.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,两正方形在数轴上运动,起始状态如图所示.AF表示的数分别为-210,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:

1)求起始位置DE表示的数;

2)求两正方形运动的速度;

3MN分别是ADEF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直线互相垂直时,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC=10米,又测得∠BDA=45°.已知斜坡CD的坡度为i=1: ,求旗杆AB的高度( ,结果精确到个位).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.

(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切;
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的方格纸中,小正方形的顶点叫做格点,△ABC是一个格点三角形(即△ABC的三个顶点都在格点上),根据要求回答下列问题:

1)画出△ABC先向左平移6格,再向上平移1格所得的△ABC

2利用网格画出△ABCBC边上的高AD

3)过点A画直线l,将△ABC分成面积相等的两个三角形;

4)在直线AB的右侧格点图中标出所有格点E(不包括点C),使SABE=SABC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°, BC=12cm,半圆O以 2cm/s 的速度从左向右运动,在运动过程中,点 D 、E 始终在直线BC 上.设运动时间为t(s) ,当t=0s时,半圆O在△ABC的左侧,OC=8cm。

(1)当t =(s)时,⊙O与AC所在直线第一次相切,点 C 到直线 AB 的距离为
(2)当 t为何值时,直线 AB 与半圆O所在的圆相切;
(3)当△ABC的一边所在直线与圆O相切时,若⊙O与△ABC有重叠部分,求重叠部分的面积.

查看答案和解析>>

同步练习册答案