【题目】如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC=10米,又测得∠BDA=45°.已知斜坡CD的坡度为i=1:
,求旗杆AB的高度(
,结果精确到个位).![]()
【答案】解:延长BD,AC交于点E,过点D作DF⊥AE于点F.
![]()
∵i=tan∠DCF=
=
,
∴∠DCF=30°.
又∵∠DAC=15°,
∴∠ADC=15°.
∴CD=AC=10.
在Rt△DCF中,DF=CDsin30°=10×
=5(米),
CF=CDcos30°=10×
=5
,∠CDF=60°.
∴∠BDF=45°+15°+60°=120°,
∴∠E=120°﹣90°=30°,
在Rt△DFE中,EF=
=
=5 ![]()
∴AE=10+5
+5
=10
+10.
在Rt△BAE中,BA=AEtanE=(10
+10)×
=10+
≈16(米).
答:旗杆AB的高度约为16米.
【解析】根据解直角三角形中斜坡CD的坡度为i,由特殊角的三角函数值,得到∠DCF=30°;求出DF=CDsin30°、CF=CDcos30°的值,得到AE的值,在Rt△BAE中,求出BA=AEtanE的值.
【考点精析】关于本题考查的关于仰角俯角问题,需要了解仰角:视线在水平线上方的角;俯角:视线在水平线下方的角才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图所示,三角形ABC(记作△ABC)在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A(-2,1),B(-3,-2),C(1,-2),先将△ABC向上平移3个单位长度,再向右平移2个单位长度,得到A1B1C1.
(1)在图中画出△A1B1C1;
(2)点A1,B1,C1的坐标分别为 、 、 ;
(3)若y轴有一点P,使△PBC与△ABC面积相等,求出P点的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等腰△ABC的底边BC=13cm,D是腰AB上一点,且CD=12cm, BD=5cm.
(1)求证:△BDC是直角三角形;
(2)求△ABC的周长
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:
![]()
根据以上信息解答下列问题:
(1)求A,B两种商品的单价;
(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点
在直线
上,
(1)直线
解析式为 ;
(2)画出该一次函数的图象;
(3)将直线
向上平移
个单位长度得到直线
,
与
轴的交点
的坐标为 ;
(4)直线
与直线
相交于点
,
点坐标为 ;
(5)三角形ABC的面积为 ;
(6)由图象可知不等式
的解集为 .
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是AB上一点,DF交AC于点E,AE=EC,DE=EF,则下列说法中:①∠ADE=∠EFC;②∠ADE+∠ECF+∠FEC=180°;③∠B+∠BCF=180°;④S△ABC=S四边形DBCF.正确的有( )
![]()
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.
![]()
(1)用两种不同的方法表示长方形ACDF的面积S
方法一:S=
方法二:S=
(2)求a,b,c之间的等量关系(需要化简)
(3)请直接运用(2)中的结论,求当c=5,a=3,S的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请你用学习“一次函数”时积累的经验和方法研究函数
的图象和性质,并解决问题.
完成下列步骤,画出函数
的图象;
列表、填空;
x |
|
|
|
| 0 | 1 | 2 | 3 |
|
y |
| 3 | ______ | 1 | ______ | 1 | 2 | 3 |
|
描点:
连线
观察图象,当x______时,y随x的增大而增大;
结合图象,不等式
的解集为______.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com