精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y1=﹣x+2的图象与反比例函数y2= 的图象相交于A,B两点,点B的坐标为(2m,﹣m).

(1)求出m值并确定反比例函数的表达式;
(2)请直接写出当x<m时,y2的取值范围.

【答案】
(1)解:∵据题意,点B的坐标为(2m,﹣m)且在一次函数y1=﹣x+2的图象上,代入得﹣m=﹣2m+2.

∴m=2.

∴B点坐标为(4,﹣2),

把B(4,﹣2)代入y2= 得k=4×(﹣2)=﹣8,

∴反比例函数表达式为y2=﹣


(2)解:当0<x<2时,y2的取值范围是y2<﹣4,当x<0时,y2>0.

【解析】(1)由点B在一次函数的图象上,代入求出m的值,得到B点坐标,代入反比例函数解析式,得到反比例函数表达式;(2)由(1)中的m=2,得到当0<x<2时,y2的取值范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ADBCCEAB,垂足分别为DEADCE交于点H,请你添加一个适当的条件:_____,使AEH≌△CEB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表是橘子的销售额随橘子卖出质量的变化表:

质量/千克

1

2

3

4

5

6

7

8

9

销售额/元

2

4

6

8

10

12

14

16

18

1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

2)当橘子卖出5千克时,销售额是_______元.

3)如果用表示橘子卖出的质量,表示销售额,按表中给出的关系,之间的关系式为______.

4)当橘子的销售额是100元时,共卖出多少千克橘子?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,两正方形在数轴上运动,起始状态如图所示.AF表示的数分别为-210,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:

1)求起始位置DE表示的数;

2)求两正方形运动的速度;

3MN分别是ADEF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直线互相垂直时,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,正方形ABCD的位置如右图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1 , 作正方形A1B1C1C;延长C1B1交x轴于点A2 , 作正方形A2B2C2C1 , …按这样的规律进行下去,第2017个正方形的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.

(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切;
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=1,将△ABC绕点C顺时针旋转得△A1B1C1 , 且点A1落在边AB边上,取BB1的中点D,连接CD,则CD的长为( )

A.
B.
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习过程中,对教材中的一个有趣问题做如下探究:

(习题回顾)已知:如图1,在中,是角平分线,是高,相交于点.求证:

(变式思考)如图2,在中,边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则还相等吗?说明理由;

(探究延伸)如图3,在中,上存在一点,使得的平分线于点.的外角的平分线所在直线的延长线交于点.直接写出的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.

1)甲、乙两种书柜每个的价格分别是多少元?

2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.

查看答案和解析>>

同步练习册答案