精英家教网 > 初中数学 > 题目详情
11.如图,在?ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.

分析 根据平行四边形的性质可得AD=BC,AD∥BC,再由BE=DF可证出AF=EC,进而可得四边形AECF是平行四边形,从而可得AE=CF.

解答 证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴AF∥EC,
∵BE=DF,
∴AF=EC,
∴四边形AECF是平行四边形,
∴AE=CF.

点评 此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对边平行且相等,一组对边平行且相等的四边形是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.下列汽车标志中,可以看作中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图①,在正方形ABCD中,F是对角线AC上的一点,点E在BC的延长线上,且BF=EF.
(1)求证:BF=DF;
(2)求证:∠DFE=90°;
(3)如果把正方形ABCD改为菱形,其他条件不变(如图②),当∠ABC=50°时,∠DFE=50度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.已知O是矩形ABCD的对角线的交点,AB=6,BC=8,则点O到AB、BC的距离分别是(  )
A.3、5B.4、5C.3、4D.4、3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得∠DAC=∠AED.
(1)求证:AC是⊙O的切线;
(2)若点E是$\widehat{BD}$的中点,AE与BC交于点F,
①求证:CA=CF;
②当BD=5,CD=4时,DF=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知反比例函数的图象经过A(2,-3),那么此反比例函数的关系式为y=-$\frac{6}{x}$(x≠0).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.已知:如图,在矩形ABCD中,DE⊥AC,∠ADE=$\frac{1}{3}$∠CDE,那么∠BDC等于(  )
A.60°B.45°C.30°D.22.5°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于(  )
A.30°B.35°C.40°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:3a$\sqrt{3a{b}^{2}}$-$\frac{b}{3}$$\sqrt{27{a}^{3}}$-2ab$\sqrt{\frac{3}{4}a}$(a≥0,b≥0)

查看答案和解析>>

同步练习册答案