精英家教网 > 初中数学 > 题目详情
16.计算:3a$\sqrt{3a{b}^{2}}$-$\frac{b}{3}$$\sqrt{27{a}^{3}}$-2ab$\sqrt{\frac{3}{4}a}$(a≥0,b≥0)

分析 根据分式性质将各二次根式化为最简二次根式,再合并同类二次根式即可.

解答 解:原式=3ab•$\sqrt{3a}$-$\frac{b}{3}$•3a$•\sqrt{3a}$-2ab•$\frac{\sqrt{3a}}{2}$
=3ab$\sqrt{3a}$-ab$\sqrt{3a}$-ab$\sqrt{3a}$
=ab$\sqrt{3a}$.

点评 本题主要考查二次根式的加减法,熟练掌握二次根式的性质将各二次根式化简是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,在?ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知y=y1-y2,且y1与x+1成反比例,y2与x2成正比例,当x=1时,y=-2;当x=-2时,y=-14.
(1)求变量y与x之间的函数关系式;
(2)当x=-3时,求y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图①,已知A(a,0),B(0,b),且a,b满足a2-8a+b2-8b=-32.
(1)求A,B两点的坐标;
(2)若点C在第一象限内的一点,且∠OCB=45°,过A作AD⊥OC于D点,求证:AD=CD;
(3)如图②,若已知E(1,0),连接BE,过B作BF⊥BE且BF=BE,连接AF交y轴于G点,求G点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:$\frac{b-c}{{a}^{2}-ab-ac+bc}$-$\frac{c-a}{{b}^{2}-bc-ab+ac}$+$\frac{a-b}{{c}^{2}-ac-bc+ab}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:$\frac{1}{a(a+1)}$+$\frac{1}{(a+1)(a+2)}$+$\frac{1}{(a+2)(a+3)}$+…+$\frac{1}{(a+9)(a+10)}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.一次函数y=$\frac{\sqrt{3}}{3}$x+3的图象分别交x、y轴于A、B两点,是否在坐标轴上存在一点C使得△ABC为直角三角形?若有,请求出C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.若使分式$\frac{{x}^{2}+2x}{x-2}$有意义,x满足的条件是x≠2.

查看答案和解析>>

同步练习册答案