精英家教网 > 初中数学 > 题目详情
7.如图所示,△ABC和△AEF为等边三角形,点E在△ABC内部,且E到点A,B,C的距离分别为3,4,5,求∠AEB的度数.

分析 连接FC,根据等边三角形的性质得出AE=AF=EF=3,AB=AC,∠AFE=60°,∠BAC=∠EAF=60°,求出∠BAE=∠CAF,证出△BAE≌△CAF,推出CF=BE=4,∠AEB=∠AFC,求出CE2=EF2+CF2,推出∠CFE=90°即可求得.

解答 解:连接FC,
∵△ABC和△AEF为等边三角形,
∴AE=AF=EF=3,AB=AC,∠AFE=60°,∠BAC=∠EAF=60°,
∴∠BAE=∠CAF=60°-∠CAE,
在△BAE和△CAF中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAE=∠CAF}\\{AE=AF}\end{array}\right.$,
∴△BAE≌△CAF,
∴CF=BE=4,∠AEB=∠AFC,
∴EF=3,CE=5,
∴CE2=EF2+CF2
∴∠CFE=90°
∵∠AFE=60°,
∴∠AFC=90°+60°=150°,
∴∠AEB=∠AFC=150°.

点评 本题考查了旋转的性质,全等三角形的性质和判定,勾股定理,勾股定理的逆定理,等边三角形的性质的应用,能综合运用定理进行推理是解此题的关键,有一定的难度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图①,在正方形ABCD中,F是对角线AC上的一点,点E在BC的延长线上,且BF=EF.
(1)求证:BF=DF;
(2)求证:∠DFE=90°;
(3)如果把正方形ABCD改为菱形,其他条件不变(如图②),当∠ABC=50°时,∠DFE=50度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.已知:如图,在矩形ABCD中,DE⊥AC,∠ADE=$\frac{1}{3}$∠CDE,那么∠BDC等于(  )
A.60°B.45°C.30°D.22.5°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于(  )
A.30°B.35°C.40°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,二次函数y=ax2+bx+c的图象经过点(-1,2),且与x轴交点的横坐标分别为x1、x2,-2<x1<-1,0<x2<1,下列结论:
①4a-2b+c<0;
②2a-b<0;
③b2+8a>4ac;
④b<-1.
其中正确的有 (  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知关于x的方程k2x2+(2k-1)x+1=0有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在Rt△ACB和Rt△AED中,己知AB=AD,∠1=∠2,求证:EG=CG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:3a$\sqrt{3a{b}^{2}}$-$\frac{b}{3}$$\sqrt{27{a}^{3}}$-2ab$\sqrt{\frac{3}{4}a}$(a≥0,b≥0)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.“两负数之积为正数”,的题设是两负数,结论是它们的积为正数.

查看答案和解析>>

同步练习册答案