| A. | 3、5 | B. | 4、5 | C. | 3、4 | D. | 4、3 |
分析 作OM⊥AB于M,ON⊥BC于N,由矩形的性质得出OA=OB=OC=OD,由等腰三角形的性质得出AM=BM,BN=CN,证出OM、ON是△ABC的中位线,由三角形中位线定理得出OM=$\frac{1}{2}$BC=4,ON=$\frac{1}{2}$AB=3即可.
解答 解:作OM⊥AB于M,ON⊥BC于N,如图所示:![]()
∵四边形ABCD是矩形,
∴OA=OC,OB=OD,AC=BD,
∴OA=OB=OC=OD,
∵OM⊥AB于M,ON⊥BC于N,
∴AM=BM,BN=CN,
∴OM、ON是△ABC的中位线,
∴OM=$\frac{1}{2}$BC=4,ON=$\frac{1}{2}$AB=3;
故选:D.
点评 本题考查了矩形的性质、三角形中位线定理、等腰三角形的性质;熟练掌握矩形的性质,由三角形中位线定理得出结果是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{{x}^{2}}+\frac{1}{x}-3=0$ | B. | ax2+bx+c=0 | C. | x2+5x=x2-3 | D. | x2-3x+2=0 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com