精英家教网 > 初中数学 > 题目详情
9.下列方程中,属于一元二次方程的是(  )
A.$\frac{1}{{x}^{2}}+\frac{1}{x}-3=0$B.ax2+bx+c=0C.x2+5x=x2-3D.x2-3x+2=0

分析 根据一元二次方程必须满足两个条件:未知数的最高次数是2;二次项系数不为0,可得答案.

解答 解:A、是分式方程,故A错误;
B、a=0时是一元一次方程,故B错误;
C、是一元一次方程,故C错误;
D、是一元二次方程,故D正确.
故选:D.

点评 本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.利用网格点和直尺,完成下列各题:
(1)补全△A′B′C′;
(2)画出AB边上的中线CD;
(3)画出BC边上的高线AE;
(4)△A′B′C′的面积为8;
(5)点Q为格点(点Q不与点C重合),且△ABQ的面积等于△ABC的面积,在图中标出所有可能的Q点.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知方程组$\left\{\begin{array}{l}{ax+by=2}\\{bx+ay=4}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,则a+b的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,a∥b,∠2=100°,则∠1的度数为80°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算下列各题
(1)$\root{3}{8}$-$\sqrt{4}$-$\sqrt{(-3)^{2}}$+|1-$\sqrt{2}$|
(2)$\sqrt{25}$-$\root{3}{-27}$+$\sqrt{\frac{1}{4}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.【阅读理解】对于任意正实数a、b,
∵($\sqrt{a}$-$\sqrt{b}$)2≥0,
∴a-2$\sqrt{ab}$+b≥0,
∴a+b≥2$\sqrt{ab}$,(只有当a=b时,a+b等于2$\sqrt{ab}$).
【获得结论】在a+b≥2$\sqrt{ab}$(a、b均为正实数)中,若ab为定值p,
则a+b≥2$\sqrt{p}$,只有当a=b时,a+b有最小值2$\sqrt{p}$.
根据上述内容,回答下列问题:若m>0,只有当m=2时,m+$\frac{4}{m}$有最小值4.
【探索应用】已知点Q(-3,-4)是双曲线y=$\frac{k}{x}$上一点,过Q作QA⊥x轴于点A,作QB⊥y轴于点B.点P为双曲线y=$\frac{k}{x}$(x>0)上任意一点,连接PA,PB,求四边形AQBP的面积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列汽车标志中,可以看作中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若DE=2,BC=5,则AD:DB=(  )
A.3:2B.3:5C.2:5D.2:3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.已知O是矩形ABCD的对角线的交点,AB=6,BC=8,则点O到AB、BC的距离分别是(  )
A.3、5B.4、5C.3、4D.4、3

查看答案和解析>>

同步练习册答案