精英家教网 > 初中数学 > 题目详情

【题目】问题探究:探究与应用
(1)如图1,在正方形ABCD中,AB=2,点E是边AD的中点,请在对角线AC上找一点P,使得PE+PD的值最小,并求出这个最小值;(不用写作法,保留作图痕迹)

(2)如图2,在矩形ABCD中,AB=6,BC=8,点E是边BC的中点,若点P是边AB上一动点,当△PED的周长最小时,求BP的长度;
问题解决:

(3)某市规划在市中心广场内修建一个矩形的活动中心,如图3,矩形OABC是它的规划图纸,其中A为入口,已知OA=30,OC=20,点E是边AB的中点,以顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系,点D是边OA上一点,若将△ABD沿BD翻折,点A恰好落在边BC上的点F处,在点F处设一出口,点M、N分别是边OA、OC上的点,现规划在点M、N、F、E四处各安置一个健身器材,并依次修建MN、NF、FE及EM四条小路,则是否存在点M、N,使得这四条小路的总长度最小?若存在,求出这个最小值;若不存在,请说明理由.

【答案】
(1)解:连接BE交AC于P,如图1所示:

则点P即为所求,

∴此时BE的长就是PE+PD的最小值,

∵在正方形ABCD中,AB=2,点E是边AD的中点,

∴AD=AB=2,AE=DE= AD=1,PE+PD=BE= =

即PE+PD的最小值为


(2)解:作点E关于直线AB的对称点E',连接DE',交AB于点P,连接PE、DE,如图2所示:

则此时△PED的周长最小,

∵在矩形ABCD中,AB=6,BC=8,点E是边BC的中点,

∴∠PBE'=∠C=90°,CD=AB=6,BE'=BE= BC=4,

又∵∠E'=∠E',

∴△PBE'∽△DCE',

,即

解得:BP=2,

即当△PED的周长最小时,BP的长度为2


(3)解:作点E关于x轴的对称点E',作点F关于y轴的对称点F',连接E'F',与x轴、y轴分别交于点M、N,连接MN、NF、FE、EM,如图3所示:

则此时这四条小路的总长最小,且最小值为E'F'+EF的长,

由题意得:BC=OA=30,AB=OC=20,点E为AB中点,

∴AE'=AE=BE= AB=10,

∴E(30,10),E'(30,﹣10),

由折叠的性质得:BF=AB=20,

∴CF'=CF=30﹣20=10,

∴F'(10,20),F'(﹣10,20),

∴EF= =10

在Rt△BE'F'中,BF'=BC+CF'=40,BE'=AB+AE'=30,

∴E'F'= =50,

由对称的性质得:MN+NF+FE+EM=E'F'+EF=50+10

即存在点M、N,使得这四条小路的总长度最小,这个最小值为50+10


【解析】(1)解决“两条线段之和最小值”的基本方法为对称法;(2)利用对称法,作出E关于直线AB的对称点E',连接DE',交AB于点P,可证出△PBE'∽△DCE',对应边成比例列出方程,求出BP;(3)四条线段的和最小值仍可采用对称法,转化为两条线段之和,即作点E关于x轴的对称点E',作点F关于y轴的对称点F',连接E'F',与x轴、y轴分别交于点M、N,再由折叠的性质和勾股定理可求出结果.
【考点精析】解答此题的关键在于理解轴对称-最短路线问题的相关知识,掌握已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图和图,请根据相关信息,解答下列是问题:

(1)本次接受随机抽样调查的学生人数为    ,图中m的值是    

(2)求本次调查获取的样本数据的平均数、众数和中位数;

(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是用直尺和圆规作一个角等于己知角的方法,即作.这种作法依据的是(

A.SSSB.SASC.AASD.ASA

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形的边在坐标轴上,点的坐标为.点从点出发,以每秒1个单位长度的速度沿轴向点运动;点从点同时出发,以相同的速度沿轴的正方向运动,规定点到达点时,点也停止运动,连接,过点作的垂线,与过点平行于轴的直线相交于点轴交于点,连接,设点运动的时间为秒.

1)线段 (用含的式子表示),点的坐标为 (用含的式子表示),的度数为

2)经探究周长是一个定值,不会随时间的变化而变化,请猜测周长的值并证明.

3)①当为何值时,有

的面积能否等于周长的一半,若能求出此时的长度;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表是橘子的销售额随橘子卖出质量的变化表:

质量/千克

1

2

3

4

5

6

7

8

9

销售额/元

2

4

6

8

10

12

14

16

18

1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

2)当橘子卖出5千克时,销售额是_______元.

3)如果用表示橘子卖出的质量,表示销售额,按表中给出的关系,之间的关系式为______.

4)当橘子的销售额是100元时,共卖出多少千克橘子?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C90°BC8cmAC6cm,点EBC的中点,动点PA点出发,先以1cm/s的速度沿A→C运动,然后以2cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t__时,APE的面积等于6 cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABC中,∠BAD=EBCADBEF

1)试说明:∠BFD=ABC

2)若∠ABC=40°EGADEHBE,求∠HEG的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践
在数学活动课上,老师给出如下问题,让同学们展开探究活动:
问题情境:
如图(1),在△ABC中,∠ACB=90°,AC=BC=a,点D为AB上一点(0<AD< AB),将线段CD绕点C逆时针旋转90°,得到的对应线段为CE,过点E作EF∥AB,交BC于点F.请你根据上述条件,提出恰当的数学问题并解答.

解决问题:
下面是学习小组提出的三个问题,请你解答这些问题:
(1)“兴趣”小组提出的问题是:求证:AD=EF.
(2)“实践”小组提出的问题是:如图(2),若将△ACD沿AB的垂直平分线对折,得到△BCG,连接EG,则线段EG与EF有怎样的数量关系?请说明理由.

(3)“奋进”小组在“实践”小组探究的基础上,提出了如下问题:延长EF与AC交于点H,连接HD,FG.求证:四边形DGFH是矩形.
提出问题:
(4)完成上述问题的探究后,老师让同学们结合图(3),提一个与四边形DGFH有关的问题.
“智慧”小组提出的问题是:当AD为何值时,四边形DGFH的面积最大?
请你参照智慧小组的做法,再提出一个与四边形DGFH有关的数学问题(提出问题即可,不要求进行解答,但所提问题必须有效)
你提出的问题是:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只不透明的袋子中有3个红球,3个绿球和若干个白球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球.

(1)若袋子内白球有4个,任意摸出一个球是绿球的概率是多少?

(2)如果任意摸出一个球是绿球的概率是,求袋子内有几个白球?

查看答案和解析>>

同步练习册答案