【题目】问题探究:探究与应用
(1)如图1,在正方形ABCD中,AB=2,点E是边AD的中点,请在对角线AC上找一点P,使得PE+PD的值最小,并求出这个最小值;(不用写作法,保留作图痕迹)
(2)如图2,在矩形ABCD中,AB=6,BC=8,点E是边BC的中点,若点P是边AB上一动点,当△PED的周长最小时,求BP的长度;
问题解决:
(3)某市规划在市中心广场内修建一个矩形的活动中心,如图3,矩形OABC是它的规划图纸,其中A为入口,已知OA=30,OC=20,点E是边AB的中点,以顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系,点D是边OA上一点,若将△ABD沿BD翻折,点A恰好落在边BC上的点F处,在点F处设一出口,点M、N分别是边OA、OC上的点,现规划在点M、N、F、E四处各安置一个健身器材,并依次修建MN、NF、FE及EM四条小路,则是否存在点M、N,使得这四条小路的总长度最小?若存在,求出这个最小值;若不存在,请说明理由.
【答案】
(1)解:连接BE交AC于P,如图1所示:
则点P即为所求,
∴此时BE的长就是PE+PD的最小值,
∵在正方形ABCD中,AB=2,点E是边AD的中点,
∴AD=AB=2,AE=DE= AD=1,PE+PD=BE= = ;
即PE+PD的最小值为
(2)解:作点E关于直线AB的对称点E',连接DE',交AB于点P,连接PE、DE,如图2所示:
则此时△PED的周长最小,
∵在矩形ABCD中,AB=6,BC=8,点E是边BC的中点,
∴∠PBE'=∠C=90°,CD=AB=6,BE'=BE= BC=4,
又∵∠E'=∠E',
∴△PBE'∽△DCE',
∴ ,即 ,
解得:BP=2,
即当△PED的周长最小时,BP的长度为2
(3)解:作点E关于x轴的对称点E',作点F关于y轴的对称点F',连接E'F',与x轴、y轴分别交于点M、N,连接MN、NF、FE、EM,如图3所示:
则此时这四条小路的总长最小,且最小值为E'F'+EF的长,
由题意得:BC=OA=30,AB=OC=20,点E为AB中点,
∴AE'=AE=BE= AB=10,
∴E(30,10),E'(30,﹣10),
由折叠的性质得:BF=AB=20,
∴CF'=CF=30﹣20=10,
∴F'(10,20),F'(﹣10,20),
∴EF= =10 ,
在Rt△BE'F'中,BF'=BC+CF'=40,BE'=AB+AE'=30,
∴E'F'= =50,
由对称的性质得:MN+NF+FE+EM=E'F'+EF=50+10 ,
即存在点M、N,使得这四条小路的总长度最小,这个最小值为50+10 .
【解析】(1)解决“两条线段之和最小值”的基本方法为对称法;(2)利用对称法,作出E关于直线AB的对称点E',连接DE',交AB于点P,可证出△PBE'∽△DCE',对应边成比例列出方程,求出BP;(3)四条线段的和最小值仍可采用对称法,转化为两条线段之和,即作点E关于x轴的对称点E',作点F关于y轴的对称点F',连接E'F',与x轴、y轴分别交于点M、N,再由折叠的性质和勾股定理可求出结果.
【考点精析】解答此题的关键在于理解轴对称-最短路线问题的相关知识,掌握已知起点结点,求最短路径;与确定起点相反,已知终点结点,求最短路径;已知起点和终点,求两结点之间的最短路径;求图中所有最短路径.
科目:初中数学 来源: 题型:
【题目】四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:
(1)本次接受随机抽样调查的学生人数为 ,图①中m的值是 ;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边,在坐标轴上,点的坐标为.点从点出发,以每秒1个单位长度的速度沿轴向点运动;点从点同时出发,以相同的速度沿轴的正方向运动,规定点到达点时,点也停止运动,连接,过点作的垂线,与过点平行于轴的直线相交于点,与轴交于点,连接,设点运动的时间为秒.
(1)线段 (用含的式子表示),点的坐标为 (用含的式子表示),的度数为 .
(2)经探究周长是一个定值,不会随时间的变化而变化,请猜测周长的值并证明.
(3)①当为何值时,有.
②的面积能否等于周长的一半,若能求出此时的长度;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是橘子的销售额随橘子卖出质量的变化表:
质量/千克 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | … |
销售额/元 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | … |
(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当橘子卖出5千克时,销售额是_______元.
(3)如果用表示橘子卖出的质量,表示销售额,按表中给出的关系,与之间的关系式为______.
(4)当橘子的销售额是100元时,共卖出多少千克橘子?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以1cm/s的速度沿A→C运动,然后以2cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=__时,△APE的面积等于6 cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.
(1)试说明:∠BFD=∠ABC;
(2)若∠ABC=40°,EG∥AD,EH⊥BE,求∠HEG的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
在数学活动课上,老师给出如下问题,让同学们展开探究活动:
问题情境:
如图(1),在△ABC中,∠ACB=90°,AC=BC=a,点D为AB上一点(0<AD< AB),将线段CD绕点C逆时针旋转90°,得到的对应线段为CE,过点E作EF∥AB,交BC于点F.请你根据上述条件,提出恰当的数学问题并解答.
解决问题:
下面是学习小组提出的三个问题,请你解答这些问题:
(1)“兴趣”小组提出的问题是:求证:AD=EF.
(2)“实践”小组提出的问题是:如图(2),若将△ACD沿AB的垂直平分线对折,得到△BCG,连接EG,则线段EG与EF有怎样的数量关系?请说明理由.
(3)“奋进”小组在“实践”小组探究的基础上,提出了如下问题:延长EF与AC交于点H,连接HD,FG.求证:四边形DGFH是矩形.
提出问题:
(4)完成上述问题的探究后,老师让同学们结合图(3),提一个与四边形DGFH有关的问题.
“智慧”小组提出的问题是:当AD为何值时,四边形DGFH的面积最大?
请你参照智慧小组的做法,再提出一个与四边形DGFH有关的数学问题(提出问题即可,不要求进行解答,但所提问题必须有效)
你提出的问题是:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一只不透明的袋子中有3个红球,3个绿球和若干个白球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球.
(1)若袋子内白球有4个,任意摸出一个球是绿球的概率是多少?
(2)如果任意摸出一个球是绿球的概率是,求袋子内有几个白球?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com