精英家教网 > 初中数学 > 题目详情
4.如图,在Rt△ABC中,∠C=90°,DE⊥AB垂足为点D,BC=BD,求证:DE=CE.(提示:连接BE)

分析 连结BE,则可利用“HL”证明Rt△BDE≌Rt△BCE,从而得到DE=CE.

解答 证明:连结BE,如图,
∵DE⊥AB,
∴∠BDE=90°,
在Rt△BDE和△BCE中,
$\left\{\begin{array}{l}{BE=BE}\\{BD=BC}\end{array}\right.$,
∴Rt△BDE≌Rt△BCE(HL),
∴DE=CE.

点评 本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.先化简,再求值:($\frac{1}{x-y}$-$\frac{1}{x+y}$)÷$\frac{2y}{{x}^{2}-2xy+{y}^{2}}$,x=$\sqrt{6}$+1,y=$\sqrt{6}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,若⊙O的半径为10,AB是⊙O的一条弦,点C是⊙O上的一动点,且∠ACB=45°,点D、E分别是AC、BC的中点,直线DE与⊙O交于F、G两点.当DF+EG取得最大值时,弦BC的长为20.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.小华和家人来太原游玩,在某酒店大厅内看到五个时钟,显示了同一时刻国外四个城市时间和北京时间,得知四个城市为纽约、悉尼、伦敦、罗马,与北京的时差分别为:(单位:小时)-13、+2、-8、-7

(1)若北京时间是11月12日上午9点10分,那么伦敦时间为11月12日上午1点10分;
(2)从左到右五个时钟对应的城市分别为:
①罗马②伦敦③北京④纽约⑤悉尼.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.先化简,再求值:(2x-y)2-3(2x-y)+4(2x-y)2-(2x-y),其中2x-y=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,已知点D是Rt△ABC的斜边BC上的一点,tanB=$\frac{1}{2}$,BC=3BD,CE⊥AD,则$\frac{AE}{CE}$=$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的“三阶等腰线”.
例如:如图①,线段BD、CE把一个顶角为36°的等腰△ABC分成了3个等腰三角形,则线段BD、CE就是等腰△ABC的“三阶等腰线”.

(1)图②是一个顶角为45°的等腰三角形,在图中画出“三阶等腰线”,并标出每个等腰三角形顶角的度数;
(2)如图③,在BC边上取一点D,令AD=CD可以分割出第一个等腰△ACD,接着仅需要考虑如何将△ABD分成2个等腰三角形,即可画出所需要的“三阶等腰线”,类比该方法,在图④中画出△ABC的“三阶等腰线”,并标出每个等腰三角形顶角的度数;
(3)在△ABC中,BC=a,AC=b,∠C=2∠B.
①作出△ABC;(尺规作图,不写作法,保留作图痕迹)
②画出△ABC的“三阶等腰线”,并做适当的标注.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.1月底,某公司还有12000千克广柑库存,这些广柑的销售期最多还有60天,60天后库存的广柑不能再销售,需要当垃圾处理,处理费为0.05元/千克,经测算,广柑的销售价格定为2元/千克时,每天可售出100千克,销售价格降低,销售量可增加,每降低0.1元/千克,每天可多售出50千克.
(1)、如果按2元/千克的价格销售,能否在60天内售完?这些广柑按此价格销售,获得的总毛利润是多少?(总毛利润=销售总收入-库存处理费)
(2)设广柑销售价格定为x(0<x≤2)元/千克时,平均每天能售出y千克,求y关于x的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列说法正确的是(  )
A.有一组邻边相等的四边形是菱形
B.有一个角是直角的菱形是正方形
C.对角线相等的四边形是矩形
D.一组对边平行,另一组对边相等的四边形是平行四边形

查看答案和解析>>

同步练习册答案