精英家教网 > 初中数学 > 题目详情
如图,动手操作:长为1,宽为a的长方形纸片(
1
2
<a<1
),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的长方形为正方形,则操作终止.当n=3时,a的值为(  )
A.
2
3
B.
3
4
C.
3
5
D.
3
4
3
5

由题意,可知当
1
2
<a<1时,第一次操作后剩下的矩形的长为a,宽为1-a,所以第二次操作时正方形的边长为1-a,
第二次操作以后剩下的矩形的两边分别为1-a,2a-1.此时,分两种情况:
①如果1-a>2a-1,即a<
2
3
,那么第三次操作时正方形的边长为2a-1.
∵经过第三次操作后所得的矩形是正方形,
∴矩形的宽等于1-a,
即2a-1=(1-a)-(2a-1),
解得a=
3
5

②如果1-a<2a-1,即a>
2
3
,那么第三次操作时正方形的边长为1-a.
则1-a=(2a-1)-(1-a),
解得a=
3
4

故选:D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.
(1)试找出一个与△AED全等的三角形,并加以证明;
(2)若AB=8,DE=3,P为线段AC上的一个动点,过点P作PG⊥AB′于点G,作PH⊥DC于点H,试判断PG+PH的值是否为定值?若为定值,请求出这个定值;若不是定值,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:
①BD=AD2+AB2;②△ABF≌△EDF;③
DE
AB
=
EF
AF
;④AD=BD•cos45°.
其中正确的一组是(  )
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,四边形ABCO是正方形,点C的坐标是(4,0).
(1)直接写出A、B两点的坐标:A______,B______;
(2)若E是BC上一点且∠AEB=60°,沿AE折叠正方形ABCO,折叠后点B落在平面内点F处,请画出点F并求出它的坐标;
(3)若E是直线BC上任意一点,问是否存在这样的点E,使正方形ABCO沿AE折叠后,点B恰好落在x轴上的某一点P处?若存在,请写出此时点P与点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,按图中所示方法将△BCD沿BD折叠,使点C落在边AB上的点C′处,则点D到AB的距离=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在直角梯形ABCD中,ADBC,∠B=90°,将直角梯形ABCD沿CE折叠,使点D落在AB上的F点,若AB=BC=12,EF=10,∠FCD=90°,则AF=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知△PQR在直角坐标系中的位置如图所示:
(1)求出△PQR的面积;
(2)画出△P′Q′R′,使△P′Q′R′与△PQR关于y轴对称,写出点P′、Q′、R′的坐标;
(3)连接PP′,QQ′,判断四边形QQ′P′P的形状,求出四边形QQ′P′P的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在长方形ABCD中,O为对角线AC的中点,P是AB上任意一点,Q是OC上任意一点,已知:AC=2,BC=1.
(1)求折线OPQB的长的最小值;
(2)当折线OPQB的长最小时,试确定Q的位置.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED内部时,∠B+∠C可由∠1,∠2表示为(  )
A.∠B+∠C=180°-∠1-∠2B.∠B+∠C=180°-
∠1+∠2
2
C.∠B+∠C=90°+∠1+∠2D.无法表示

查看答案和解析>>

同步练习册答案