精英家教网 > 初中数学 > 题目详情
如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:
①BD=AD2+AB2;②△ABF≌△EDF;③
DE
AB
=
EF
AF
;④AD=BD•cos45°.
其中正确的一组是(  )
A.①②B.②③C.①④D.③④

①∵△ABD为直角三角形,∴BD2=AD2+AB2,不是BD=AD2+AB2,故说法错误;
②根据折叠可知:DE=CD=AB,∠A=∠E,∠AFB=∠EFD,∴△ABF≌△EDF,故说法正确;
③根据②可以得到△ABF△EDF,∴
DE
AB
=
EF
AF
,故说法正确;
④在Rt△ABD中,∠ADB≠45°,∴AD≠BD•cos45°,故说法错误.
所以正确的是②③.
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:三点A(a,1)、B(3,1)、C(6,0),点A在正比例函数y=
1
2
x的图象上.
(1)求a的值;
(2)点P为x轴上一动点.
①当△OAP与△CBP周长的和取得最小值时,求点P的坐标;
②当∠APB=20°时,求∠OAP+∠PBC的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在△ABC中,AB=20,AC=12,BC=16,把△ABC折叠,使AB落在直线AC上,求重叠部分(阴影部分)的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色.
(1)GC的长为______,FG的长为______;
(2)着色面积为______;
(3)若点P为EF边上的中点,则CP的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,是用一张长方形纸条折成的.如果∠1=110°,那么∠2=______°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

取一张矩形的纸进行折叠,具体操作过程如下:
第一步:先把矩形ABCD对折,折痕为MN,如图1;
第二步:再把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为Bn,得Rt△ABE,如图2;
第三步:沿EB线折叠得折痕EF,如图3;
利用展开图4探究:
(1)△AEF是什么三角形?证明你的结论.
(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=20°,则∠1的度数为______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,动手操作:长为1,宽为a的长方形纸片(
1
2
<a<1
),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的长方形为正方形,则操作终止.当n=3时,a的值为(  )
A.
2
3
B.
3
4
C.
3
5
D.
3
4
3
5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为(  )
A.80°B.100°C.60°D.45°

查看答案和解析>>

同步练习册答案